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Abstract

In this master thesis D-brane-instanton generated contributions to the phenomeno-
logy of intersecting D-brane models are investigated. At first a brief introduction
to Calabi-Yau and orientifold compactification of supersymmetric string theory is
given and the elementary properties and consistency conditions of intersecting brane
models like Ramond-Ramond-tadpole cancellation and Green-Schwarz mechanism
are explained. The connection between field theory- and D-instantons is shown by
the example of the D3/D(-1)-system and the instanton calculus in string theory is
described which is the main tool to calculate instanton-contributions to the effective
supergravity action. The normalization of the holomorphic contributions in terms of
Planck- and string-mass is derived. After showing the need for D-brane instantons
in the generation of perturbatively forbidden Yukawa couplings in MSSM orientifold
models, the implications of the required “Yukawa-instantons” for flavour violating
effects are investigated systematically for a specific 5-stack quiver model. Contribu-
tions to lepton-flavour violating meson decays are found which are finally used to
derive a lower bound on the string mass scale.
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Chapter 1

Introduction

The standard model of particle physics is one of the great achievements of theoretical
physics. As a renormalizable, anomaly free quantum gauge field theory containing
QCD and electroweak theory it can explain with extraordinary accuracy a wide
variety of phenomena ranging over many orders of magnitude in energy. It explains
the dynamics and systematics of the strong force responsible for mesons and baryons,
the vector-axial-nature of the weak force and predicted the properties of the massive
W and Z gauge bosons that mediate charged and neutral currents. It explained the
supression of flavour changing neutral currents leading to the prediction of the charm
quark. And it also gives a candidate mechanism for electroweak symmetry breaking
-just to mention a few of the deep insights of this model of nature.

But it is also clear that it cannot be a complete theory of nature. First of all it does
not include gravity. But also in its attempt to describe the other three fundamental
interactions, there are a lot of facts which cannot be explained by the standard
model. There are at least 26 undetermined parameters, where no predictions can
be made from the theory. For example the masses of the elementary fermions are
set by the Yukawa couplings but we do not know what determines the values of
these couplings. There is no prediction from the standard model. Experimentally,
we can determine the masses of quarks and leptons. They range over many orders of
magnitude and there are huge differences between the families. The standard model
also does not explain why there are three families with different mass hierarchies
and also anomaly cancellation seems a big coincidence.

String theory is not only a promising candidate to get a unified quantum theory of
gravity and the other interactions but can give a geometrical explanation of some
of the above mentioned problems. The consideration of the quantum theory of a
one-dimensional object propagating in spacetime (which is parameterized by a map
of a two dimensional domain of definition to a target manifold) makes it possible to
have the right amount of degrees of freedom to have both, gravitational and gauge
excitations in the massless spectrum. To be a consistent quantum theory, (super-
symmetric) string theory predicts spacetime to be ten-dimensional and therefore
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12 CHAPTER 1. INTRODUCTION

we have to explain why we have not discovered the extra dimensions up to now.
One way to do this is to assume spacetime to be the direct product of the visible
Minkowski space and an internal compact (Calabi-Yau) manifold. The geometry of
the internal space will then determine some of the physical properties of the external
space.

One important discovery in string theory was the existence of non-perturbative
objects like D-branes. It was shown that that the massless spectrum (which is
associated to the particles we see in nature) of open strings ending on a number of
coincident branes reproduces the degrees of freedom of non-Abelian super Yang-Mills
theories. This is the basis of intersecting brane models in which branes contain the
external Minkowski space and intersect in the compact internal space. Depending
on the intersection geometry we get different realizations of four dimensional chiral
fermions. Multiple intersections of two stacks of branes correspond to the families
of particles and from general consistency conditions like charge conservation in the
compact space one can infer anomaly cancellation.

Furthermore it is possible to relate the strength of the Yukawa couplings to the
volume of internal geometrical objects such as world-sheet- and D-instantons which
opens up the possibility to explain the observed mass hierarchies of the standard
model. Conversely these hierarchies together with phenomenological bounds like
proton or meson decay give us important restrictions and hints about the size and
energy scales of the fundamental parameters in string theory.



Chapter 2

Orientifold compactifications and
D-branes

2.1 Calabi-Yau compactification

The cancellation of the superconformal anomaly requires the spacetime dimension
of superstring-theories to be D = 10. Since we observe only 4 dimensions in nature
(at least up to the available energies in present accelerators) we have to “make the
remaining dimensions small”. One way to achieve this is to demand our spacetime
to be of a direct product form M10 = M4×X where M4 should be four dimensional
Minkowski space and the internal space X should be a compact six-dimensional
manifold, about which we make reasonable physical and geometrical assumptions to
be described in the following subsection.

2.1.1 Geometrical and physical requirements

One way to deal with the hierarchy between the electroweak and GUT/Planck scales
is to avoid quadratic divergences in certain loop corrections to the standard model.
This can be done by demanding the standard model to be supersymmetric because
then fermionic and bosonic contributions cancel out. Therefore we have to choose
our internal manifold such that spacetime supersymmetry in four dimensions is
possible. We start with a direct product metric of the form

ds2 = gµνdx
µ ⊗ dxν + gmndy

m ⊗ dyn (2.1.1)

Here, the internal coordinates on X are labeled by ym and the external coordi-
nates on M4 by xµ and capital coordinate indices range over the whole product
manifold M = 0, 1 . . . 9. One could also include a “warp factor” multiplying the

13



14 CHAPTER 2. ORIENTIFOLD COMPACTIFICATIONS AND D-BRANES

first or the second summand of (2.1.1) but we restrict to the above case. We con-
sider the low-energy limits of type IIA/B superstring theory which are given by
type IIA/B supergravity in 10 dimensions. To have unbroken supersymmetry, the
vacuum should obey ǫQ|0〉 = 0, where Q is the generator of the ten-dimensional
supersymmetry-transformation parameterised by ǫ and therefore both objects are
spinors of SO(1, 9). If we denote by Ψ an arbitrary field we get the following con-
dition on the vacuum expectation values

〈δǫΨ〉 = 〈0|[ǫQ,Ψ]|0〉 = 0 (2.1.2)

Now consider the variations of the gravitinos ψM =
(ψ1

M

ψ2
M

)

in type II supergravity :

δǫψM = ∇Mǫ+
1

4
HMNPΓNPPǫ+ . . . (2.1.3)

Here the Γ-matrices represent the Clifford algebra in ten dimensions, H = dB,
where B is the NS-NS antisymmetric tensorfield and P is Γ11 for type IIA and σ3

for type IIB (omitting the factors of identity). The dots represent terms involving
the different R-R-fields. If we take the vacuum expectation value of all the bosonic
fields to be zero (and thus H = 0), we get to the constraint (the covariant derivative
contains the vacuum expectation value of the spin connection):

δǫψM = ∇Mǫ = 0 (2.1.4)

Since the spinor-bundle over the product manifold M4 × X decomposes into ten-
sor products of the corresponding bundles over M4 and X respectively, we get the
following decompositions in type IIA/B

ǫ1IIA = ξ1
+(xµ)⊗ η+(ym) + ξ1

−(xµ)⊗ η−(ym) (2.1.5)

ǫ2IIA = ξ2
+(xµ)⊗ η−(ym) + ξ2

−(xµ)⊗ η+(ym) (2.1.6)

ǫaIIB = ξa+(xµ)⊗ η+(ym) + ξa−(xµ)⊗ η−(ym) a = 1, 2 (2.1.7)

Now we can expand ∇M into internal and external part and infer from equations
2.1.5 to 2.1.7

∂µξ
1/2
± (x) = 0 ∇mη±(y) = 0 (2.1.8)

Therefore we get a constant spinor in four dimensions and we can choose for example
η+ as a covariantly constant Weyl spinor on our internal manifold X . This has
interesting consequences to the type of the internal manifold one can choose:
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• X is a Kähler manifold. For the proof we observe that we can define the
following endomorphism of the tangent bundle of X :

Jnm = iη†+Γnmη+

where Γnm = 1
2
(ΓmΓn − ΓnΓm), and the Γn are this time the 6-dimensional

gamma-matrices. From their properties, one can show that J squares to −Id
and the metric on X is Hermitean w.r.t. J (for more details see for example
[2]). In addition, we see immediately that the Nijenhuis tensor of J vanishes
(because η+ is covariantly constant):

Np
mn = Jqm(∇qJ

p
n −∇nJ

p
q )− Jqn(∇qJ

p
m −∇mJ

p
q ) = 0

And thus J is integrable.

• X is Ricci-flat. For the proof we use again that η+ is covariantly constant:

0 = [∇m,∇n]η+ =
1

4
Rmnpqγ

pqη+

from which it follows for Riemannian manifolds that Rmn = 0.

From these two facts it follows from a theorem by Iwamoto that the holonomy group
of X is contained in SU(3) (see [2]). Because η+ is a spinor on the internal manifold,
its chirality components transform as 4 and 4̄ under SO(6) ≃ SU(4) if we parallel
transport it around loops in X . Thus if we assume the holonomy is SU(3) i.e. we
have a Calabi-Yau-manifold we can decompose

4SU(4) = 3SU(3) ⊕ 1SU(3) (2.1.9)

and so we get exactly one singlet, i.e. a constant spinor on X and the same for the
4̄SU(4). If we again use the decomposition (2.1.5) to (2.1.7) we see that we get in this
case one constant Majorana spinor in four dimensions, which parameterizes N = 1
supersymmetry in four dimensions. If we instead considered a proper subgroup of
SU(3) there would in general be more singlets and therefore extended supersymme-
try in four dimensions. For example if we consider type II theories, we start with
N = 2 in D = 10 and depending on the internal geometry we get in four dimensions
N = 8 if X is a torus T 6, N = 4 if X = K3× T 2 and as already mentioned N = 2
for X = CY3.

2.1.2 Compactification of type II theories on
Calabi-Yau manifolds

As shown in the last subsection, we can get the minimal amount of supersymmetry
in four dimensions if we compactify on Calabi-Yau threefolds X . We now want to
summarize elementary facts about Calabi-Yau manifolds and then give the massless
spectrum of string theory compactified on this type of geometry.
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Calabi-Yau manifolds

For the basics of the geometry of Calabi-Yau manifolds we refer to the standard
literature, for example [3] to [5].
There are five equivalent definitions of a Calabi-Yau manifold. A Kähler manifold
of complex dimension n

• which is Ricci-flat

• which has vanishing first Chern class

• which has trivial canonical bundle

• with holonomy group SU(n)

• which has a globally defined, non-vanishing holomorphic n-form.

is called Calabi-Yau.

We are now going to list some elementary properties of this class of manifold which
will be important later.

If we denote the space of sections of
∧p,q(X ) :=

∧p T ∗(1,0)X⊗∧q T ∗(0,1)X by Ωp,q(X )
then the Dolbeault cohomology is defined by

Hp,q

∂̄
(X ) :=

Ker(∂̄ : Ωp,q(X )→ Ωp,q+1(X ))

Im(∂̄ : Ωp,q−1(X )→ Ωp,q(X ))
. (2.1.10)

We then can define the Hodge numbers hp,q := dimHp,q(X ). It turns out ([3]) that
the general Hodge diamant of a Calabi-Yau threefold is given by

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(2.1.11)

The two nontrivial Hodge-numbers h1,1 and h2,1 have an important geometrical
interpretation in terms of the moduli of the Calabi-Yau manifold. To see this, we
add to the metric a perturbation gµν+hµν and demand that the Calabi-Yau-condition
is preserved (in order to get perturbations of the metric which are not related by
diffeomorphism, we also demand to fix diffeomorphism-invariance ∇µhµν = 0).
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• h1,1

Consider the Kähler form ω of X : ω = gµν̄dz
µ∧dz̄ν̄ . Looking at perturbations

of the form hµν̄ one can infer from the Lichnerowicz-equation [10]

∇λ∇λhµν + 2R α β
µ ν hαβ = 0 (2.1.12)

that ω changes by a harmonic form, and therefore ω + δω again gives rise to
a Kähler class [ω + δω]. Now Yau’s theorem ([6], [7]) states, that, provided
vanishing first Chern class, there is a unique element in each Kähler class of X
that is Ricci-flat. Thus the cohomology H1,1(X ) is isomorphic to the possible
varitations of the Kähler form that preserves the Calabi-Yau condition and
therefore the moduli space of Kähler structures has dimension h1,1.

• h2,1

In this case we look at perturbations of the form hµν . These transformations
correspond to a change of the complex structure J on the manifold X (for more
details see for example [8]). If we change the coordinates on X infinitesimally
from z to z′, generated by a vector field V = vzi∂i + v̄z̄i ∂̄i, J transforms as

J −→ AJA−1 A = 1 + J (2.1.13)

where J is the Jacobian of the transformation. Therefore, infinitesimally (this
is just a local statement, so actually we get information only about the tangent
space to the moduli space of complex structures at the point J)

J ′ = J + ∂v̄ + ∂̄v (2.1.14)

So these perturbations are given by elements of H1
∂̄
(TX ) for the holomorphic

part and by H1
∂(TX ) for the antiholomorphic part which are given by H1(TX )

by the Cech-Dolbeault-isomorphism ([8]). Taking into account the triviality of
the canonical bundle ∧3T ∗X and therefore the triviality of ∧3TX ∼= ∧3T ∗X we
see that the wedge product gives an isomorphism between ∧2T ∗X and ∧T ∗X
and therefore

H1(TX ) ∼= H1(∧2T ∗X ) ∼= H2,1(X ) (2.1.15)

Thus we see that at least locally, the moduli space of complex structures of X
is characterized by H2,1(X ) and has therefore dimension h2,1.

We remark that a fascinating aspect about Calabi-Yau manifolds is, that lots of them
come in mirror-pairs: (X ,X ′) is said to be a mirror pair, if H2,1(X ) ∼= H1,1(X ′) and
H2,1(X ′) ∼= H1,1(X ). The mirror conjecture says that this holds for all Calabi-Yau
manifolds. More on this interesting subject and also on the relation to physics can
be found in [9] and [10].
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Compactification of type II strings on Calabi-Yau manifolds

For later reference we give the massless spectra of the type II theories after GSO
projection (which in the NS sector eliminates the tachyon and leaves the massless
states unchanged and in the R sector selects a specific chirality of the ground state).
Let us denote the creation and annihilation operators by ψn (half integer for NS and
integer for the R sector). To disinguish left and right movers, we use a tilde. We
begin with the IIA theory and comment about the changes in the IIB case:

• NS-NS :

ψi− 1
2
ψ̃j− 1

2

|0, k, NS〉L ⊗ |0, k, NS〉R

which can be decomposed as

8V ⊗ 8V ∼= 35 (graviton) ⊕ 28 (B-field) ⊕ 1 (dilaton)

which is the same for the IIB theory.

• R-NS

|0, k, ~α,R〉L ⊗ ψ̃i− 1
2
|0, k, NS〉R

which include the states

8S ⊗ 8V ∼= 56 (gravitino, pos.chirality) ⊕ 8 (dilatino, neg.chirality)

which is again the same for the IIB theory.

• NS-R

ψi− 1
2
|0, k, NS〉L ⊗ |0, k, ~α,R〉R

which gives the states

8V ⊗ 8S ∼= 56 (gravitino, neg.chirality) ⊕ 8 (dilatino, pos.chirality)

Here, we have the opposite chiralities for the IIB theory.

• R-R

|0, k, ~α,R〉L ⊗ |0, k, ~β, R〉R
which contains the the following states

8S ⊗ 8S ∼= 8 (1-form) ⊕ 56 (3-form)

In contrast to the odd dimensional forms we get in the IIB theory the even
dimensional forms

1 (0-form) ⊕ 28 (2-form) ⊕ 35 (4-form)
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The massless fields are the fields of the type IIA/B supergravities. In the follow-
ing we want to compactify these theories to four dimensions, with a Calabi-Yau
threefold as internal geometry. To get the four dimensional low energy effective
theory, we have to dimensionally reduce, like in [1] [12] [11] the fields in the above
list. For definiteness, consider the type IIA theory (similar arguments hold for the
IIB case). In general, if we have the massless Dirac/Klein-Gordon equation in ten
dimensions, we can split them into four dimensional and internal part, the internal
part describing the four dimensional mass.

• For ten-dimensional scalar fields, the internal operator is the Laplace-operator.
The Laplace-equation on the compact internal space has just the constant
solution and therefore we get one scalar field in four dimensions.

• For the p-form fields Cp in the ten-dimensional spectrum which have an action

Sp =

∫

X
dCp ∧ ∗dCp (2.1.16)

and for the equations of motion, we get △Cp = 0 , where △ = d ∗ d + dd∗
is the internal Laplace-Beltrami operator (we fixed the gauge by imposing
d ∗ Cp = 0). Thus the number of massless fields in four dimensions is given
by the number of harmonic forms or according to Hodge’s theorem by the
dimension of the corresponding cohomology group.

• If we have spinor fields in ten dimensions we can make the ansatz (where the
ξn are eigenfunctions of the internal Dirac operator)

Ψ(xµ, ym) =
∑

n

ζn(x
µ)⊗ ξn(ym) (2.1.17)

and decompose the Dirac operator into internal and external part. Again
the zero modes of the internal operator determine the massless fields in four
dimensions. In this case the kernel of the internal operator has dimension
given by the index of the internal Dirac operator.

• Finally the ten-dimensional metric GMN splits into various sectors. If we take
both indices four dimensional, gµν , which is a scalar on the internal space, we
get just the four dimensional metric. The index structures gµj and gµj̄ would
correspond to (1, 0)- and (0, 1)-forms on the internal space, respectively. But
from the Hodge-diamond in the previous section, we can see, that the di-
mensions of the corresponding cohomologies are zero. The remaining metric
components with all indices internal, gij and gij̄ are scalars in four dimensions.
The four dimensional masses correspond to the variations of the internal met-
ric, and as we saw in the last section, the massless cases are exactly the complex
structure (h2,1 complex scalar fields) and Kähler moduli (h1,1 real scalar fields).
One can physically interpret them as the Goldstone bosons coming from the
choice of one specific vacuum geometry [1].
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We can now apply this procedure to the type IIA supergravity theory. To see the
structure of the four dimensional theory, we can organize the resulting fields into
representations of four dimensional N = 2 supersymmetry. To find the spinor-
part of the four dimensional multiplets, we use the following decomposition of the
spin-bundles S(M4 × X ) = S+(M4 × X )⊕ S−(M4 × X )in ten dimensions:

S(M4 × X ) =(S+(M4)⊗ S+(X ))⊕ (S−(M4)⊗ S−(X ))

⊕ (S−(M4)⊗ S−(X ))⊕ (S+(M4)⊗ S+(X )) (2.1.18)

From this we get the decomposition of spin-1
2
-matter. For the spin-3

2
-matter we

have a similar decomposition into different parts (see for example [12]). Instead of
writing down the precise formulas (which we do not need in the following) we want
to describe the physical interpretation.

• The four-dimensional part of the metric and one-form together with the two
chiralities of the two spin-3

2
parts of the decomposition of the gravitini give

the four dimensional gravity-multiplet.

• The h1,1 zero modes of the metric get complexified by the (1, 1) part of the
NS-NS two-form and together with the Cµij̄ part of the R-R three-form and
four dimensional spin-1

2
parts of the gravitini give h1,1 vector-multiplets.

• The h2,1 complex zero modes of the metric together with the Cijk̄ and Cīj̄k
part of the R-R three-form and two chiralities of the spin-1

2
part of the decom-

position of the gravitini give h2,1 complex hypermultiplets.

• The zero mode of the dilaton combines with the dual of the four-dimensional
part of the NS-NS two-form (which gives rise to a scalar c given by ∗4ddB = dc).
Together with the four parts of the decomposition of the dilatini and the Cijk
and Cīj̄k̄ parts of the R-R three-form to an additional hypermultiplet which is
also called the universal hypermultiplet, because it is also part of the spectrum
of the type IIB theory.

We observe that there are h1,1 vectormultiplets and h2,1 + 1 hypermultiplets and
the gravity multiplet in type IIA. The massless four dimensional spectrum of the
type IIB theory can be obtained with similar methods (see [12]). An interesting
fact is that the spectra of type IIA/B theories differ only by exchanging the Hodge
numbers h2,1 and h1,1. This is again a consequence of mirror symmetry, which states
in general that compactification of type IIA on a Calabi-Yau threefold gives the same
spectrum as compactification of type IIB on the mirror threefold.
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2.2 D-branes

One of the main sources of the second superstring revolution was the observation
of non-perturbative objects, especially Dirichlet-branes. They are not present in
the perturbative string spectrum but show up in the easiest case if we consider the
T-dual of string theory compactified on a circle. The observation is that open string
endpoints in the T-dual theory are confined (have Dirichlet boundary conditions)
to p-dimensional submanifolds of the target space. But this is not only a geometric
statement. In fact, Polchinski showed [15] that one can describe the fluctuations
around the submanifold in terms of quantized open strings ending on it and therefore
a D-brane is a “dynamical” object. The resulting open string spectrum contains a
U(1)-gauge connection and it turns out that if N Dp-branes coincide, we get a
U(N) gauge theory. Therefore D-branes and as we will see later, intersecting branes
(where one also gets chiral matter fields) are a natural starting point for constructing
models of particle physics.

2.2.1 T-duality of open strings

Consider for simplicity bosonic string theory with target space topology R1,24× S1,
the radius of the circle being R. We get a discrete momentum along the compact
direction. In the closed string sector we have in addition a conserved winding number
k and the mass spectrum is given by

M2 =
n2

R2
+
k2R2

α′2 +
2

α′ (N + Ñ − 2). (2.2.19)

we see that this spectrum is invariant under the T-duality transformation

R −→ α′

R
(2.2.20)

which interchanges winding and momentum quantum numbers. Now in the open

string, there is no conserved winding since differnt winding states can be deformed
continuously into each other. And therefore the question arises, what is the T-dual
of the open strings? Remembering that T-duality has the following effect ([11]) on
the embedding coordinate X25(τ, σ):

X25(τ, σ) = XL(τ+σ)+XR(τ−σ) −→ X̃25(τ, σ) = XL(τ+σ)−XR(τ−σ) (2.2.21)

we observe that Neumann and Dirichlet boundary conditions get exchanged:
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∂σX
25 ←→ ∂τ X̃

25 (2.2.22)

Thus an open string with Neumann conditions on the compact coordinate will be
confined to a 25-dimensional submanifold in the dual theory. It is also interesting
to consider the limits of large and small radius. Taking R→ 0 in the closed sector,
we see from 2.2.19 that all nonzero momentum states will decouple but we get a
continuous set of winding modes. Therefore we actually get again a theory in 26
dimensions (we interprete the continuous set of winding modes as new free momen-
tum states). The other limit R→∞ has a similar effect and the two scenarios are
physically mapped to each other by T-duality. In the open sector R → 0 will also
decouple states with nonzero momentum in the compact direction but there will
be no continuum coming from winding states. Therefore we only get a theory in
25 dimensions. The only difference of open and closed strings are the boundaries
and therefore the interpretation is that the open string boundaries get confined to
a lower dimensional submanifold, a D-brane (see figure 2.1).

2.2.2 Gauge symmetry

On R1,24×S1 we can decompose the gauge field (of the open bosonic string massless
spectrum) as (Aµ, A25). By a gauge transformation we can chose A25 to be a constant
denoted by θ

2πR
. The momentum in the 25-direction gets shifted to

p25 + A25 =
n

R
+

θ

2πR
(2.2.23)

Taking in addition U(n)-Chan Paton lables |ij〉 into account, then we get again a
shifted momentum and therefore the changed mass formula:

M2 =
1

2πR
(2πn+ θi − θj) +

1

α′ (N − 1) (2.2.24)

In the generic case (θi 6= θj for i 6= j) we get a U(1)n gauge theory. Let us then look at
the T-dual theory. Using the mode expansion ([11]) we get (using X̃25 = X̃25+2πR̃)

X̃25(π)− X̃25(0) = −(2πn+ θi − θj)R̃ = −2πα′(A25
ii −A25

jj ) (2.2.25)

and we see that the shift in the momentum gives an open string in the dual picture
which stretches between two D-branes at positions A25

ii and A25
jj (see figure 2.1).

Now turning the argumentation around, we see, that if we let k different D-branes
coincide, we get k2 gauge fields in the massless spectrum of the open string (because
θi = θj for the respective pairs i, j), forming the adjoint representation of U(k).
This is also named a k-stack of D-branes. The same argumentation continues to
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θ1 θ2 θ3

Figure 2.1: Open strings with ends on D-branes

hold if we consider superstrings and D-branes which are (one also says which wrap)
more complicated submanifolds such as the product of Minkowski space and some
nontrivial cycle in the internal Calabi-Yau manifold.

2.2.3 DBI action and Chern-Simons couplings

Information about the dynamics of D-branes can be derived from scattering ampli-
tudes ([11]). The first part of the action which we will write down just for complete-
ness is given by the Dirac-Born-Infeld-action

SDBI = Tp

∫

Σp+1

dp+1ξe−Φ(X)(−det(gab(X) + 2πα′Fab(X)− Bab(X))
1
2 (2.2.26)

where gab(X) = ∂aX
M∂bX

NgMN and Bab = ∂aX
M∂bX

NBMN are the pullbacks of
the target space metric and NS-B-field and F is the field strength of the U(1)-gauge
field on the brane.

More important for later is the second part of the action, which describes the cou-
pling of the brane to the Ramond-Ramond-fields. The main idea of its construction
is that chiral fermions on the D-brane world volume (which for example exist at
the intersections of different branes) have anomalous gauge transformations which
are proportional to the index of the Dirac operator on the D-brane world volume
Σ. The index can be expressed in terms of topological quantities due to the Atiyah-
Singer-theorem [16]:
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ind(i /D) =

∫

Σ

ch(F ) ∧ ch(−F ) ∧ Â(TΣ)

Â(NΣ)
∧ e(NΣ) (2.2.27)

where TΣ and NΣ denote the tangent and normal bundles, ch the Chern character,
Â is the Â-class (both explained in the first appendix), e denotes the Euler class
and F is the curvature of the Chan-Paton bundle with base Σ.

Assuming now that the RR-fields Cl couple in the following way to the world volume
of the D-brane (the sum over different grades of forms is denoted by ⊕)

SRR =

∫

Σ

⊕

p

Cp+1 ∧ Y (2.2.28)

where Y should be of the form that the behaviour of this type of coupling under
gauge transformations exactly cancels the anomaly mentioned above, then one finds
the following Chern-Simons-coupling of the RR fields to the D-brane [17]:

SCS = −µp
∫

Σ

ch(F ) ∧
√

Â(RT )

Â(RN)
∧

⊕

p

Cp (2.2.29)

Here, RT and RN are the curvatures of the tangent and normal bundles to Σ and
µp = 2πl−p−1

s , where ls is the string length. The general action of the RR-p-form
fields is given by the usual kinetic term and the above Chern-Simons action:

SCp+1 =

∫

M1,4×X
dCp+1 ∧ ∗dCp+1 + SCS. (2.2.30)

we will use special cases of this action later to derive important consistency condi-
tions for string theoretic models for particle physics.

2.3 Orientifold compactification

The massless modes of the type IIA/B superstring theories give the spectra ofN = 2
supergravity theories. In section 2.1 we observed that compactifying them on a Cal-
abi Yau threefold gives N = 2 supergravity theories in four dimensions. To get
phenomenologically attracive models, we have to reduce the amount of supersym-
metry toN = 1 (the N=2 chiral supermultiplet contains in addition to the standard
model fermion field also a fermionic partner in the same representation of the gauge
group). We also want to consider D-branes as building blocks of MSSM-like mo-
dels. As we have seen in the previous section, they are charged objects under RR
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antisymmetric tensor fields. Because the internal space of our compactification is
compact and without boundary, we need to cancel these charges according to the
Gauss law. Both problems can be fixed by introducing a so called orientifold pro-
jection.
To reduce the amount of supersymmetry, let us consider the worldsheet parity
operator

Ω : (τ, σ) 7→ (τ, 2π − σ) (2.3.31)

combined with an operator which gives us a sign depending on the left moving
fermion number (FL denotes the left moving fermion number operator):

Ω(−1)FL (2.3.32)

This acts on the Fock space of physical states by interchanging left/right moving sec-
tors and giving a minus sign for an odd number of left moving fermions. Especially
in the NS-R (R-NS)-sectors we see that only a linear combination of the two graviti-
nos is invariant under (2.3.32). In the type IIA case, which is the theory we always
use for examples (but if not otherwise stated, similar arguments hold for the type
IIB case):

8C ⊗ ψ̃− 1
2
|0, NS〉R + ψ− 1

2
|0, NS〉L ⊗ 8̃R (2.3.33)

This is invariant because we have physical states (and therefore (−1)FL = 1 ) and
the world-sheet parity interchanges left movers and right movers. Therefore the
projected theory has only N = 1 supersymmetry.

If we also combine the above projection with an antiholomorphic involution σ̄ of the
internal space (if we can for example introduce complex coordinates zi, i = 1 . . . 3)

σ̄ : X → X

zi 7→ ±z̄i i = 1 . . . 3 (2.3.34)

we see that the fixed point set of the involution is a 3-cycle in the internal space and
contains in addition the whole external Minkowski space:

Fix(σ̄) = R1,3 × Σ3 (2.3.35)

It turns out that this fixed point set also couples to the RR-fields. It is called
orientifold plane, Op-plane for short, where p denotes the number of its spatial
dimensions (similar to the notation for Dp-branes). The appropriate Chern-Simons-
coupling has a similar structure as for the Dp-branes:
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SOp = −Qpµp

∫

R1,4×Σp−3

√

L(RT /4)

L(RN/4)
∧

⊕

q

Cq (2.3.36)

where RT and RN are the scalar curvatures of the tangent and normal bundle of
the orientifold plane respectively and L denotes the Hirzebruch-polynomial, which is
given for reference in appendix 1. In additionQp denotes the charge of the orientifold
plane which one can calculate via scattering amplitudes and in our normalisation
convention has the value 2p−4.

In the next section we want to combine the Chern-Simons-actions of D-branes and
O-planes in such a way that the overall RR-charge in the internal space is zero.

2.3.1 Tadpole-cancellation conditions

In this section we want to derive a topological condition on the cycles wrapped by
the D-branes and orientifold planes, which correspons physically to charge neutrality
in the compact internal space. Consider orientifold p-planes (labelled by i) which
contain the Minkowski space R1,3 (p ≥ 3) and wrap (p − 3)-cycles Σp−3 in the
internal space. In addition consider stacks (labelled by a) of Na Dp-branes and
their images under the orientifold map, which also contain the Minkowski space and
wrap (p − 3)-cycles in the internal Calabi-Yau. Firstly, we want to determine the
equation of motion of the RR form Cp+1. The relevant kinetic part of the type
IIA/B supergravity action is given by

Skin =
1

8κ2
10

∫

M1,3×X
Fp+2 ∧ ∗Fp+2 Fp+2 = dCp+1 (2.3.37)

where κ10 is proportional to the fourth power of the string length. In addition we
use the Chern-Simons couplings given in (2.2.29) for the Dp-branes and in (2.3.36)
for the Op-planes. To carry out the variation of the Chern-Simons couplings with
respect to the RR form Cp+1 we expand the square root expressions. For example,
the first terms in the expansion for the Dp - brane case gives (using p1(TΣp+1) =
p1(TM1,3)p1(TΣp−3) )

√

Â(RT )

Â(RN )
= (1− 1

48
p1(R

(4)
T ) + . . . )

∧ (1− 1

48
p1(R

Σp−3

T ) +
1

48
p1(R

Σp−3

N )− 1

2 · 242
p1(R

X
T ) + . . . ) (2.3.38)

and we get an expression of similar structure for the Op-planes ([18]). Expanding
also the Chern character and then varying the relevant parts of the action with
respect to Cp+1 leads to

δCp+1S = δCp+1(Skin + SCSDp + SCSOp )
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= − 1

4κ2
10

∫

M1,3×X
δCp+1 ∧ d ∗ Fp+2 + µp

∑

a

∫

ΣDpa

ch0(Fa) ∧ δCp+1

+ µp
∑

a′

∫

ΣDp
a′

ch0(Fa) ∧ δCp+1 −Qpµp
∑

i

∫

ΣOpi

δCp+1. (2.3.39)

We observe that ch0(F ) = tr(1) = NDp. If we also introduce the Poincaré-duals to
the cycles ΣDp and ΣOp

πDp := PD(ΣDp) πOp := PD(ΣOp) (2.3.40)

we get for the variation of the action

δCp+1S =− 1

4κ2
10

∫

M1,3×X
δCp+1 ∧ ∗dFp+2 + µp

∑

a

NDpa

∫

M1,3×X
δCp+1 ∧ πDpa

+ µp
∑

a′

NDpa′

∫

M1,3×X
δCp+1 ∧ πDpa′

−Qpµp
∑

i

∫

M1,3×X
δCp+1 ∧ πOpi

(2.3.41)

which gives us the equation of motion

1

4κ2
10

d ∗ Fp+2 = µpNDpa

∑

a

πDpa + µpNDpa′

∑

a′

πDpa′
−Qpµp

∑

i

πOpi
(2.3.42)

If we now consider the corresponding homology classes ΠDp, ΠOp ∈ H3(X ,Z) we
can translate the above equation into homology. Observing that d ∗ Fp+2 is exact,
we get

∑

a

Na(ΠDpa + Π′
Dpa

)−Qp

∑

i

ΠOpi
= 0 (2.3.43)

which is also known as the tadpole cancellation condition with respect to the RR-
form Cp+1.



Chapter 3

Intersecting D-brane models

In this chapter we consider type IIA string theory compactified on Calabi-Yau
manifolds/orientifolds with D6-branes wrapping 3-cycles on the internal space. In
general position (i.e. infinitesimal deformations do not change the geometrical pro-
perties) two internal 3-cycles intersect at points. As we have already seen, we get
non-Abelian gauge groups at the intersections. It will turn out that the massless
open string spectrum at the intersection will contain chiral fermions in four dimen-
sions. The resulting anomalies are cancelled by the RR-tadpole cancellation condi-
tion described in the last chapter for the Abelian case and by the generalized Green-
Schwarz-mechanism for the mixed Abelian non-Abelian and gravitational case. Thus
this setup provides the possibility to construct consistent four-dimensional models
of particle physics.

3.1 Branes intersecting at angles and chirality

To illustrate the appearance of chiral spinors, let us consider two D6-branes, D6a
and D6b which both contain the four-dimensional Minkowski space. For simplicity
let us take the six-dimensional internal space to be C3 with complex coordinates
Z1, Z2, Z3. Four-dimensional Minkowski space should be part of both branes and
therefore the two branes wrap cycles of real dimension three in the internal space.
Generically, they intersect at a point in the internal space and the intersection is
characterized by three angles θ1, θ2, θ3, schematically depicted in figure 3.1.

Now consider the sector of open strings which have one endpoint on the first brane
and one endpoint on the second. We are interested in the massless case and there-
fore both endpoints are confined to the intersection of the two branes. The only
difference in the quantisation procedure are different boundary conditions on the

28
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M1,3

θ1
θ2 θ3

C C C

Figure 3.1: Two D6-branes containing the four-dimensional external space and wrap-
ping different 3-cycles in the internal manifold

two endpoints, describing the confinement to the two different branes:

σ = 0 : ∂σ(Z
j + Z̄j) = ∂τ (Z

j − Z̄j) = 0

σ = π : ∂σZ
j + e2iθj∂σZ̄

i = 0

∂τZ
j − e2iθj∂τ Z̄

j = 0.

(3.1.1)

These boundary conditions give rise to a modified mode expansion. In particular,
the oscillator modes of both, world-sheet bosons and fermions get shifted by ǫj :=

θj

π
:

αjn 7→ αjn+ǫj α̃jn 7→ α̃jn−ǫj (bosonic) (3.1.2)

ψjn+ν 7→ ψn+ν+ǫj ψ̃jn+ν 7→ ψ̃jn+ν−ǫj (fermionic) (3.1.3)

where as usual ν = 0 for the Ramond sector and ν = 1
2

for the Neveu-Schwarz
sector. An important consequence of this shift is the following. In the generic case,
where all θj are non-zero, all excitations in the Ramond-sector along the internal
directions are massive. The only zero modes come from the directions along the
common Minkowski space. These form, as in the unshifted case, a representation
of the Clifford-algebra, but this time in four dimensions. The GSO-projection will
project out one chirality and therefore the Ramond ground state is a single chiral
Weyl fermion.

The mass of the lowest excitations of the NS-sector (which give scalars in four di-
mensions) depends on the θj . Only for specific values of them, the bosonic and
fermionic degrees of freedom in four dimensions match. As a consequence super-
symmetric models only arise (if at all) on intersecting brane configurations of specific
values of the intersection angles.

3.2 Massless spectrum and family replication

Let us now consider stacks a, b of Na and Nb D-branes respectively. They are
assumed to wrap the 3-cycles

Πa,Πb ∈ H3(X ,Z) (3.2.4)
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which are in general not invariant under the orientifold projection Ωσ̄(−1)FL. For
this case, the gauge symmetry realized on the intersection of the two cycles is
U(Na)× U(Nb). The degeneracy of the massless modes of the open string stretch-
ing between the two stacks is Na and Nb respectively. We therefore see that the
chiral fermion at the intersection described in the last section transforms under the
bifundamental representation ( a, b). If the string stretches between the stack a
and its orientifold image a’ the corresponding chiral fermion on the intersection of
Πa and its orientifold image Π′

a transforms in the symmetric a or antisymmetric

a representation of the gauge group U(Na).

In a compact internal space X 3-cycles generically have multiple intersections.
Clearly one can create an arbitrary number of intersections by deforming the cycles
wrapped by the brane. But the physically interesting quantity is the net number of
chiral fermions which translates into the notion of topological intersection numbers.
These are counted by the intersection product (M is a manifold of dimension n):

◦ : Hp(M,Z)×Hn−p(M,Z)→ Z (3.2.5)

(Π1,Π2) 7→
∫

M

ηΠ1 ∧ ηΠ2 (3.2.6)

where ηΠi
are the elements representing the cycles Πi in cohomology.

Now we see that we get Πa ◦ Πb copies of the chiral fermionic matter arising at
the intersection of the cycles Πa and Πb wrapped by stacks of D-branes. This is a
geometrical explanation of the existence of multiple families of elementary particles.
The exact rules ([19]) to compute the multiplicities of the various representations
(depending on the type of object which wraps the cycles involved in the intersections)
are given in the table.

Representation Multiplicity

a
1
2
(Π′

a ◦ Πa + ΠO6 ◦ Πa)

a
1
2
(Π′

a ◦ Πa −ΠO6 ◦Πa)
( a, ¯b) Πa ◦ Πb

( a, b) Π′
a ◦ Πb

Table 3.1: Chiral matter for intersecting D6-brane models

3.3 Anomaly cancellation and Green-Schwarz mech-

anism

In the last section we described the existence of four-dimensional chiral fermions at
the intersection of D-branes. As usual chiral fermions will be the source of gauge
anomalies. In the following we will see that purely non-Abelian anomalies will cancel
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as a consequence of the RR-tadpole cancellation condition derived earlier. The case
of Abelian, mixed Abelian non-Abelian and gravitational Anomalies will cancel due
to the generalized version of the Green-Schwarz-mechanism.

3.3.1 Non-Abelian anomalies

To prove the absence of non-Abelian anomalies, we first recall the tadpole cancella-
tion condition 2.3.43 for type IIA string theory with D6-branes and O6-planes:

∑

a

Na(ΠDa + Π′
Da

)− 4
∑

i

ΠOi
= 0 (3.3.7)

Now from field theory we know (e.g. [20]) that the non-Abelian anomaly coming
from the graphs

SU(Na)

SU(Na)

SU(Na)

SU(Na)

SU(Na)

SU(Na)

is proportional to the group theory factor

Aaaa ∝ tr(T aa {T ba , T ca}) =
1

2
A(ra)d

abc (3.3.8)

where ra denotes the representation and T ka are the generators of the gauge group
SU(Na). One can show that A(r) = 1 for the fundamental representation and
A(r) = N − 4 (A = N + 4) for the antisymmetric (symmetric) representation of
SU(N) and A(r) = −A(r̄) for the conjugate representation. Summing over all
possible chiral fermions and using the multiplicities of table 3.1, we get for the
anomaly

Aaaa ∝
∑

b6=a
Nb(−Πa ◦ Πb + Π′

a ◦ Πb)

+
Na − 4

2
(Πa ◦ Π′

a + Πa ◦ ΠO6)

+
Na + 4

2
(Πa ◦ Π′

a − Πa ◦ ΠO6)

= Πa ◦ (
∑

b6=a
Nb(Πb − Π′

b) +NaΠa)− 4Πa ◦ ΠO6

= 0.

(3.3.9)

where we have used Πa ◦ Πa = 0 for threecycles Πa.
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3.3.2 The Green-Schwarz mechanism

We now want to treat pure Abelian, mixed Abelian non-Abelian anomalies and gra-
vitational anomalies. In the following we sketch the main arguments for the cancel-
lation of these anomalies by introducing an appropriate Green-Schwarz-counterterm.

Let us first introduce useful objects for the later calculation. Let {Γi} be a basis
of H3(X ,Z) and {Λj} a dual basis w.r.t the intersection product (Γi ◦ Λj = δji ).
Therefore we can expand every 3-cycle Πa ∈ H3(X ,Z) as

Πa = αiaΓi =
∑

a

βajΛ
j (3.3.10)

Now we consider the U(1)a − SU(Nb)
2 anomaly with contributions of the following

type of diagrams:

U(1)a

SU(Nb)

SU(Nb)

U(1)a

SU(Nb)

SU(Nb)

They are proportional to the group theory factor ([20])

Aabb ∝
∑

r

Qa(r)Cb(r) (3.3.11)

where the sum goes over the representations of chiral fermions in the loop, Qa is
the U(1)-charge of stack a and Cb(r) is 1

2
for the fumdamental/antifundamental and

N+2
2

(N−2
2

) for the symmetric (antisymmetric) representations. Writing this again
with the help of the multiplicities given in table 3.1 we get

Aabb ∝1

2
δab(

∑

l

NΠl
(Πl + Π′

l)− 4
∑

l

ΠO6l
) ◦ Πb +

Na

2
(−Πa + Π′

a) ◦ Πb

=
Na

2
(−Πa + Π′

a) ◦ Πb

(3.3.12)

where we have again used the tadpole cancellation condition 2.3.43. In the following,
we want to use the Chern-Simons couplings of the RR-forms to the stack a to show
that by dimensional reduction we get couplings which cancel the above field theoretic
anomaly. Thus string theory provides a mechanism to get consistent models of chiral
gauge theories in four dimensions. Consider the following Chern-Simons couplings
of the RR-forms C3 and C5 to the field strength Fa on the stack a:

∫

R1,3×Πa

C3 ∧ tr(Fa ∧ Fa)
∫

R1,3×Πa

C5 ∧ trFa. (3.3.13)
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We now want to perform a dimensional reduction. Therefore we use the decom-
position 3.3.10 and integrate over the internal parts to obtain the following four-
dimensional scalars (axions) and two-forms:

Φi =

∫

Γi

C3 Bj =

∫

Λj

C5 (3.3.14)

using them we can write the couplings 3.3.13 as follows:

∑

i

αia

∫

R1,3

ΦitrFa ∧ Fa; Na

∑

j

βj

∫

R1,3

Bj
2 ∧ Fa (3.3.15)

where the factor Na comes from the trace over the U(1)-generator if we decompose
U(Na) = SU(Na)× U(1). These couplings can be used to get the following Green-
Schwarz-diagram

F a
µν

B Φ

F b
µν

F b
µν

Figure 3.2: Tree-level axionic contribution

The amplitude will be proportional to the vertex coefficients, which we get from
3.3.15:

AGS ∝
Na

2

∑

i

(αia − αia
′
)βbi

=
Na

2

∑

i,j

(αia − αia
′
)βbjΓi ◦ Λj

=
Na

2
(Πa − Π′

a) ◦ Πb (3.3.16)

We get the 1
2
-factor from the symmetry of the diagram and therefore we see that it

will cancel the field theoretic anomaly 3.3.12.

Similar cancellations can be observed for the other types of anomalies, like the cubic
Abelian and gravitational cases ([14]).

An additional important observation of the above couplings 3.3.15 is the fact that
some of the Abelian gauge fields get massive via a Stückelberg-type mechanism.
Therefore they are still global symmetries at the perturbative level and therefore
restrict the form of allowed couplings in the theory. This will be discussed in the
next section.
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3.3.3 U(1)-symmetries

We again recall the schematic Green-Schwarz coupling structure of the U(1)-gauge
field Fa on the stack a to the two-form B

∫

R1,3

m Bj ∧ Fa (3.3.17)

Consider now the following Lagrangian, containing in addition the kinetic terms for
the 2-form B and for the U(1)-gauge field Fa:

L = −dB ∧ ∗dB − 1

4g2
Fa ∧ ∗Fa +mB ∧ Fa (3.3.18)

We want to show that such a Lagrangian is equivalent to a Lagrangian with a mass
term for the gauge field Aa or some gauge equivalent configuration, with Fa = dAa.
To show this we observe that the above Lagrangian can be reformulated with an
independent field H plus the constraint that dH = 0 (and therefore locally H = dB)
which is implemented by an auxiliary field a:

L = −H ∧ ∗H − 1

4g2
Fa ∧ ∗Fa +mB ∧ dAa +m a dH (3.3.19)

if we do a partial integration in the last two terms we get (assuming that the boun-
dary terms vanish)

L = −H ∧ ∗H − 1

4g2
Fa ∧ ∗Fa −m H ∧ (Aa + da) (3.3.20)

Now using the resulting equation of motion ∗H = −m
2
(Aa + da) we get

L = −m
2

4
(Aa + da) ∧ ∗(Aa + da)− 1

4g2
F ∧ ∗F (3.3.21)

which gives a mass to the field Aa+da. This is also called the Stückelberg mechanism.
To preserve gauge invariance this mechanism also demands that the scalar a trans-
forms under U(1) gauge transformations to compensate the transformation of the
gauge field Aa. As a result, U(1)-symmetries which become massive in this way
will still be symmetries in perturbation theory and therefore will often forbid phe-
nomenologically desired couplings later on. This will be one of the reasons for the
introduction of D-brane instantons. Because we also want at least one massless U(1)
to have electromagnetism, we are finally interested in the conditions under which
a linear combination of U(1)′s will remain massless. Recall the coupling which
generates the Stückelberg-mass:

∫

R1,3

Na(πaj − π′
aj)B

j ∧ Fa (3.3.22)
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If we now consider a set of stacks of D6-branes labelled by x with Nx branes at the
stack x we can look at the linear combination qxFx of the U(1)-field strengths. The
Stückelberg coupling then becomes

∑

x

∫

R1,3

Nx(πxj − π′
xj)B

j ∧ qxFx (3.3.23)

and therefore the condition for a linear combination of U(1)’s to remain massless
can be read off:

∑

x

qxNx(πx − π′
x) = 0 (3.3.24)

This is again a topological condition which will play an important restrictive role in
finding realistic models of particle physics.



Chapter 4

D-brane instantons

4.1 Instantons in Yang-Mills theories and

collective coordinates

In the first section we want to briefly recall the basic elements of Yang-Mills in-
stantons ([21][22][23][26]). We first want to state an instanton-solution to SU(2)
Yang-Mills theory and then describe the behaviour of path integrals if we expand
the physical fields around an instanton solution. It will turn out that it is necessary
to integrate exactly over the collective coordinates of the instanton solution to avoid
an infinite path integral.

4.1.1 Finite action solutions by selfdual/anti-selfdual
connections

Consider the pure Euclidean Yang-Mills action over a compact manifold M

LYM =
1

g2

∫

M

tr(F ∧ ∗F ) (4.1.1)

where the trace is over the adjoint representation of the gauge group. To write this
more conveniently we use the scalar product of forms η, ζ with values in the Lie
algebra g of the gauge group G:

〈η ⊗X, ζ ⊗ Y 〉 := η ∧ ∗ζ ⊗ tr(adX ◦ adY ) (4.1.2)

where η, ζ ∈ ∧kT ∗M , X, Y ∈ g and ad denotes the adjoint representation. With
this definition we get

LYM =
1

g2

∫

M

〈F, F 〉 (4.1.3)

36
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Observing that the Hodge-star on 2-forms squares to the identity in four Euclidean
dimensions, we can estimate the Yang-Mills action from below:

0 ≤ 〈F ± ∗F, F ± ∗F 〉
= 〈F, F 〉 ± 〈∗F, F 〉 ± 〈F, ∗F 〉+ 〈∗F, ∗F 〉
= 2(〈F, F 〉 ± 〈∗F, F 〉) (4.1.4)

and therefore we get a lower bound for the Yang-Mills-action:

SYM ≥ |
∫

M

trF ∧ F | (4.1.5)

And we observe that this bound is reached by selfdual or anti-selfdual field strengths.
Therefore to minimize the action we only have to solve the (anti-)selfduality con-
dition. This was first done in [22] for the gauge group SU(2): If we want to get a
solution to the Yang-Mills equations for the connection A (F = DAA, DA the gauge
covariant derivative), the field strengths should vanish for |x| → ∞. Therefore the
following ansatz is reasonable:

A = f(r)U−1dU U : R4\{0} → SU(2) (4.1.6)

Here, f is a real function of r = |x| which has the property limr→∞ f(r) = 1 in
order to get a pure gauge ansatz. The (anti-)selfduality conditions then lead to
ordinary differential equations for f and one can show that the solution in the so
called singular gauge [26] is given by (η̄aµν are the t’Hooft symbols defined in the
appendix):

Aaµ(x; x0; ρ) = 2
ρ2η̄aµν(x− x0)

ν

(x− x0)2[(x− x0)2 + ρ2]
(4.1.7)

We observe that the solution is characterized by 4 parameters x0 (the position of the
instanton) and ρ (the size of the instanton) which are called the collective coordinates
or moduli of the instanton. We will see later that they will play an important role
in the evaluation of the path integral in the presence of an instanton.

The class of maps U : R4\{0} → SU(2) is topologically the same as the maps
S3 → S3 and therefore is classified by the homotopy group π3(S

3) ∼= Z and one
can show that for every n ∈ Z there is a solution minimizing the action with the
minimal value

SYM =
1

g2

∫

M

trF ∧ F = n
8π2

g2
(4.1.8)

where n ∈ Z is usually referred to as the instanton number. Atiyah, Drinfield,
Hitchin and Manin gave a construction of instanton solutions to all numbers n ∈ Z

([24]) and it was given for more general gauge groups in [25].

4.1.2 The path integral in the presence of an instanton and

collective coordinates

We now want to calculate correlation functions in an instanton background by ex-
panding the action around the classical instanton solution.
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Bosonic collective coordinates

Let us first consider a system with bosonic fields φj and action S[φj]. We decompose
the fields to treat quantum fluctuations around the classical instanton solution:

φj(x) = φjcl(x, λ) + φjqu(x, λ) (4.1.9)

where we have written down explicitly the dependence of the classical instanton
solution and the quantum part on the collective coordinates as seen in the last
section. The collective coordinates only enter by introducing the split into the
classical and quantum part. Let us also expand the action up to second order in the
fields:

S[φ] = Scl +
1

2
φiquMijφ

j
qu Mij =

δ2Scl[φ]

δφi(x, λ)δφj(x, λ)
(4.1.10)

Where we denote for convenience the operator M and its integral kernel representa-
tion by the same letter. We now observe that the operator M has zero modes, which
are by definition nonzero, normalizable eigenfunctions of M with zero eigenvalue.

They are given by ζj :=
∂φj

cl

∂λ
. To prove this, we take the derivative of the equations

of motion w.r.t. the collective coordinate λ and assume the normalizability:

0 =
∂

∂λ

δScl

δφjcl(x, λ)

=

∫

dy
δ2Scl[φ]

δφicl(x, λ)δφjcl(y, λ)

δφjcl(y, λ)

∂λ
= Mij

∂φjcl
∂λ

(4.1.11)

If now M is a self adjoint operator, we can expand the quantum fluctuations into
eigenfunctions Ej of M:

MijE
j
κ = ǫκE

j
κ; φjqu =

∑

m∈N

ξmE
j
m; 〈Em, En〉 = cmδmn (4.1.12)

Then we can write the path integral as

∫

[dφ]e−S[φ] =

∫

(
∏

m∈N

√
cmdξm)e−Scl+

1
2

∑

m∈N
ξ2mǫmcm (4.1.13)

If there are no zero modes, the Gaussian integration would lead to a result propor-
tional to (detM)−

1
2 , but in the presence of zero modes this would be infinite and

thus the path integral ill-defined. We therefore single out the integration over the
zero mode to get

∫

[dφ]e−S[φ] =

∫

dξ0
√
c0e

−Scl(det′M)−
1
2 (4.1.14)

where det′M comes from performing the Gaussian integration without the zero mode
ξ0 (which is also called the amputated determinant).
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Now to convert this into an integration over the collective coordinates, we do a
Faddeev-Popov-insertion:

1 =

∫

dλδ(g(λ))
∂g(λ)

∂λ
. (4.1.15)

We will do this insertion with g(λ) = −〈φ− φcl(λ)|∂φcl

∂λ
〉 and therefore we get:

∫

[dφ]e−S[φ] =

∫

dλdξ0
√
c0e

−Scl(det′M)−
1
2 δ(−〈φqu|

∂φcl
∂λ
〉)(− ∂

∂λ
〈φqu(λ)|∂φcl

∂λ
〉)

=

∫

dλdξ0
√
c0e

−Scl(det′M)−
1
2 δ(ξ0c0)(c0 − 〈φqu(λ)|∂E

∂λ
〉)

=

∫

dλ
√
c0e

−Scl(det′M)−
1
2 (4.1.16)

here we have neglected the term 〈φqu(λ)|∂E
∂λ
〉 because in a semiclassical approxima-

tion the solution φcl should not oscillate too strong. For more zero modes, we get
([26])

∫

[dφ]e−S =

∫

∏

i

dλi(detU)
1
2 e−Scl(det′M)−

1
2 (4.1.17)

where U denotes the metric on the space of collective coordinates.

Fermionic collective coordinates

Again we use the ansatz φ(x) = φcl(x, λ)+φqu(x, λ) and we can expand the quantum
fields φqu in eigenfunctions

φjqu =
∑

m∈N

ξmE
j
m (4.1.18)

but now the ξm are Grassmann-valued parameters. Using again the definition
(4.1.13) of the path integral measure we now get because of the Berezin-integration-
rules:

∫

[dφ]e−S[φ] =

∫

dξ0
√
c0e

−Scl(det′M)
1
2 (4.1.19)

and after transforming the integration variable ξ0 into the collective coordinates
of the fermionic instanton solution ([26]) one again has an integration over the
Grassmann-valued (fermionic) collective coordinates.

4.2 D-brane instantons

In this section we now turn to instantonic objects in string theory. Here we will
come to a generalization of field theory instantons. A Dp-brane instanton is by
definition an object which is pointlike in the external space and wraps a (p + 1)-
dimensional cycle in the internal Calabi-Yau space. They are often called Euclidean
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branes or Euclidean instantons because they are only extended in the (Euclidean)
internal dimensions. Our first example are the D(-1) branes which are simply points
in the external space. Placing them into spacetime filling D3-branes, we will be
able to derive the ADHM-constraints and the BPST instanton solution from string
scattering amplitudes. Therefore it is reasonable to consider those objects as string
theoretic realization of gauge instantons.

4.2.1 The ADHM-constraints from string scattering

We now want to describe how the ADHM constraints arise from string scattering
amplitudes in the α′ → 0 limit and how one gets the classical instanton solution
stated in chapter 4.1 . It was realized in [28] that one can describe an instanton
solution with topological charge k in SU(N) gauge theory if we place k D(−1)
branes into a stack of N D3-branes (which fill out the four dimensional external
space). In order to find the effective Lagrangian of the massless fields on the D3
branes, we consider scattering amplitudes of the involved fields and perform the
limit α′ → 0 where the Yang Mills coupling remains constant (this is often called
the field theory limit). As an example, we get the interaction term of a gauge boson
Aµ and two gauginos ΛαA by calculating the following disc-amplitude

MΛ̄AΛ ∝ 〈V
(− 1

2
)

Λ̄
(z1)V

(−1)
A (z2)V

(− 1
2
)

Λ (z3)〉z12 z23 z31 (4.2.20)

where zij = zi − zj and the superscripts on the vertex operators denote the ghost
charges. The vertex operators needed for this amplitude are given by (we first drop
factors of 2πα′ and just give the dependence in the final results by reintroducing
them in the following way: We have (2πα′)

1
2 for bosonic fields of the NS sector and

(2πα′)
3
4 for the fermionic fields of the R sector)

V
(−1)
A = Aµ

1√
2
ψµ(z)e

−φ(z)eipµXµ(z) (4.2.21)

V
(− 1

2
)

Λ̄
= Λ̄α̇AS

α̇(z)SA(z)e−
1
2
φ(z)eipµXµ

(4.2.22)

V
(− 1

2
)

Λ = ΛαASα(z)SA(z)e−
1
2
φ(z)eipµXµ

(4.2.23)

Here we assume Euclidean signature. X,ψ denote the string coordinates and S the
spin fields. We use µ, ν = 1 . . . 4 for the external dimensions, a, b = 5 . . . 10 for the
internal dimensions and M,N = 1 . . . 10 for complete space. A ten dimensional spin
field decomposes into Weyl spinors Sα(S

α̇)of SO(4) of positive (negative) chirality
and Weyl spinors SA(SA) of SO(6) of positive (negative) chirality. Inserting this
into 4.2.20 we can factorize the different sectors which leads to the evaluation of

Λ̄α̇A〈Sα̇(z1)SA(z1)ψµ(z2)Sα(z3)SB(z3)〉ΛαB(z3)
1√
2
Aµ(p)

〈e− 1
2
φ(z1)e−φ(z2)e−

1
2
φ(z3)〉〈eip1µXµ(z1)eip

2
µX

µ(z2)eip
3
µX

µ(z3)〉z12 z23 z31
= − 1√

2
CΛ̄α̇Aσ̄

α̇
µ βAµ(p)Λ

βBδAB (4.2.24)
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Where we used the correlators given in the appendix and C is a normalisation
constant. Taking the trace over the gauge group indices, summing over the different
orderings of the generators of the gauge group (for the rules of computing disc
diagrams see for example [11]) and writing out the normalisation factor C, we arrive
at

− 2i

g2
YM

tr(Λ̄α̇A[ /A
α̇β
,ΛA

β ]) (4.2.25)

where we get a factor of (2πα′)2 from the fields and in addition we introduced a
normalisation constant for disc amplitudes for D3-branes which is given by 1

π2α′2g2Y M

(see for example [33]). We can proceed in the same way for all the massless fields of
the D3-D3 sector. Taking the α′ → 0 limit (with the Yang-Mills coupling fixed) and
doing a Fourier transform one can derive the Euclidean N = 4 super-Yang-Mills
action which is responsible for these interactions ([30]):

S =
1

g2
YM

∫

d4x tr{1
2
F 2
µν − 2Λ̄α̇A /̄D

α̇β
ΛA
β + (Dµφa)

2

− 1

2
[φa, φb]− i(Σa)ABΛ̄α̇A[φa, Λ̄

α̇
B]− i(Σ̄a)ABΛαA[φa,Λ

B
α ]}. (4.2.26)

But in addition to that we can also consider the massless fields in the D(−1)-
D(−1) sector and in the D3-D(−1)-sector. We first give the relevant fields and their
properties:

sector modulus vertex operator representation

NS aµ
aµ√

2
ψµ(z)e−φ(z) adoint of U(k)

NS χm
1√
2
χmψm(z)e−φ(z) ”

NS Dc
1
2
Dcη̄

c
µνψ

µ(z)ψν(z) ”

R MαA MαASα(z)SAze
− 1

2
φ(z) ”

R λα̇A λα̇AS
α̇(z)SA(z)e−

1
2
φ(z) ”

Table 4.1: D(-1)-D(-1)-sector

sector modulus vertex operator representation

NS wα̇ wα̇∆(z)Sα̇(z)e−φ(z) (k,N)
NS w̄α̇ w̄α̇∆̄(z)Sα̇(z)e

−φ(z) (N,k)

R µA µA∆(z)SA(z)e−
1
2
φ(z) (k,N)

R µ̄A µ̄A∆̄(z)SA(z)e−
1
2
φ(z) (N,k)

Table 4.2: D(−1) - D3 - sector

∆ and ∆̄ denote the twist fields which change the boundary conditions from the
D(3) to the D(−1) sector and vice versa.
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Now again the scattering amplitudes will give us the relevant information about the
action of the moduli fields. Let us, for example, consider the following amplitude

AλaM ∝ tr{z12z23z31λα̇A
1√
2
〈Sα̇(z1)SA(z1)ψµ(z2)Sβ(z3)SB(z3)〉

aµMβB〈e− 1
2
φ(z1)e−φ(z2)e−

1
2
φ(z3)〉}

=− i tr{λα̇A(σ̄µ)
α̇
βa

µMβA} (4.2.27)

which will give a contribution of the form

AλaM = − i

g2
0

tr(λα̇A[/̄a
α̇β
,MA

β ]) (4.2.28)

Where we have introduced again the constants appropriate to the type of fields (as
explained above) which give us (2πα′)2 and in addition we have a factor of 1

4π2α′2g20
which together give only a dependence of g0. This is the analogue of the Yang-Mills
coupling for the D(-1) branes and is kept constant in the field theory limit . If we
calculate in a similar way all the 3-point correlators in the D(-1)-D(-1) and D3-D(-1)
sector we arrive at the action for the moduli given by [30]

Sm = tr{ − [aµ, χ
m]2 − i

4
MαA[χAB,M

b
α] + χmw̄α̇w

α̇χm +
i

2
µ̄AµBχAB

− iDc(w̄α̇(τ c)β̇α̇wβ̇ + iη̄cµν [a
µ, aν ])

+ iλα̇A(µ̄Awα̇ + w̄α̇µ
A + σµβα̇[M

βA, aµ])} (4.2.29)

where χAB = χm(Σm)AB.

We observe that the equations of motion for Dc and λα̇A exactly correspond to the
ADHM constraints (given in [26]).

4.2.2 The BPST instanton from string scattering

It is also possible to get the instanton solution in classical field theory. For simplicity
we consider only the case of topological charge 1, i.e. we have an Abelian Chan-
Paton gauge group in the (-1)-sector. In addition we restrict to SU(2) gauge theory
on the D3-branes to get the original BPST solution. We have to evaluate the disc
amplitude with two moduli and one gauge field inserted given in figure 4.1.

To calculate the amplitude we use the vertex operators for the moduli w and w̄ of
the above tables. They are in the (−1)-ghost picture so we have to chose the vertex
operator for the gauge field in the zero ghost picture. Applying the picture changing
operation we get:

A(0)I
µ = 2iT I(∂Xµ − ip · ψψµ)e−ipX (4.2.30)

and thus we get for the amplitude

Mw̄Aw = 〈V (−1)
w̄ VAI

µ(p)V
(−1)
w 〉z12z23z31
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w̄

w

AI
µ

Figure 4.1: Disc diagram leading to the BPST instanton solution: The two insertions
of the moduli vertex operators change the boundary from the D3 sector (which is
represented by a solid line) to the D(-1) sector (represented by a dashed line).

= w̄α̇〈∆̄(z1)e
−ipX(z1)∆(z3)〉wβ̇z12z23z31〈e−φ(z1)e−φ(z3)〉

〈Sα̇(z1)2iT I(∂Xµ − ip · ψψµ(z2)S β̇(z3)〉
= i(T I)abp

ν η̄cµν(w
b
α̇ (τc)

α̇
β̇
w̄β̇a)e

−ipx0 (4.2.31)

where we have used the correlators and t’Hooft symbols ηcµν given in the appendix.

Now if we want to calculate the gauge potential Aµ(x) in position space we have to
multiply the above amplitude with the propagator δµν/p

2 and then take the Fourier
transform with respect to the momentum variable p:

AIµ(x) =

∫

d4p

2π2
AIµ(p, w̄, w)

1

p2
eipx

= − 2(T I)ab(w
b
α̇ (τc)

α̇
β̇
w̄β̇a)η̄

c
µν

(x− x0)
ν

(x− x0)4
(4.2.32)

To write this solution more conveniently, let us define 2ρ2 := w̄α̇aw
a
α̇ and the follow-

ing matrices

t a
c b =

1

2ρ2
(w a

α̇ (τc)
α̇
β̇
w̄β̇b) (4.2.33)

Now if we look at the ADHM constraints in the case of topological charge 1 given
in equation 4.2.29 which in this case reads

w̄α̇(τc)
β̇
α̇wβ̇ = 0 (4.2.34)

With the help of this constraint we get the following

Claim: The t-matrices obey the same algebra as the generators of the SU(2) gauge
theory.

Proof : We have to show that

t ai bt
b
j c − t a

j bt
b
i c = iǫijkt

a
k c (4.2.35)
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The left hand side is given by

1

4ρ4
[w a

α̇ (τi)
α̇
β̇
w̄β̇bw

b
γ̇ (τj)

γ̇

δ̇
w̄δ̇c − w a

α̇ (τj)
α̇
β̇
w̄β̇bw

b
γ̇ (τi)

γ̇

δ̇
w̄δ̇c]. (4.2.36)

Now we use the fact that the identity and the Pauli matrices form a basis of complex
2-dimensinal matrices:

w̄ b
β̇
wγ̇b = 2ρ21 +mi(τ

i)β̇γ̇ (4.2.37)

Inserting this in the left hand side of the above equation, we see that the part
multiplying the identity exactly gives the desired result. It therefore remains to
prove the vanishing of the second part. So we have to prove the vanishing of

mkw
a
α̇ (τiτkτj − τjτkτi)α̇β̇w̄

β̇
b (4.2.38)

this is equal to

mkw
a
α̇ (iτaτiǫjka − iτaτjǫkia − iτaτkǫjia)α̇β̇w̄

β̇
b

= mkw
a
α̇ (iτaτkǫjia)

α̇
β̇
w̄β̇b

= w a
α̇ [iτa(w̄w − 2ρ21)ǫjia]

α̇
β̇
w̄β̇b (4.2.39)

but both terms vanish because of the ADHM constraint 4.2.34. q.e.d.

And therefore we can write the gauge potential in the following form (using the
normalisation tr(TATB) = 1

2
δAB)

AIµ(x) = 4ρ2tr(T Itc)η̄
c
µν

(x− x0)
ν

(x− x0)4

= 2ρ2η̄Iµν
(x− x0)ν

(x− x0)4
(4.2.40)

But this is exactly the first term in the large distance (|x − x0| ≫ ρ) of the BPST
solution in singular gauge presented in section 4.1:

Aaµ(x; x0; ρ) = 2
ρ2η̄aµν(x− x0)

ν

(x− x0)2[(x− x0)2 + ρ2]

= 2ρ2η̄cµν
(x− x0)ν

(x− x0)4
(1− ρ2

(x− x0)2
+ . . . ) (4.2.41)

Also the higher terms in this expansion can be derived from scattering amplitudes
as shown in [30].

4.2.3 E2-instantons in type IIA string theory

In our first example we did not care about the internal space when considering the
properties specific for instantons. Now we want to look at instantons which are
3-dimensional cycles and therefore extended objects in the internal space.
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Let us, for concreteness consider type IIA string theory compactified on a Calabi-
Yau manifold. To reduce the amount of supersymmetry from N = 2 to N = 1
we perform an orientifold projection Ωσ̄(−1)FL as given in chapter 2.3, where Ω
denotes the world sheet parity operator, σ̄ is an antiholomorphic involution and FL
denotes the number operator of left moving fermions. We therefore get O6-planes
wrapping a (special Lagrangian) 3-cycle in the internal manifold as a fixed point set.
As we saw in the last chapter, the Green-Schwarz-mechanism was used to cancel the
RR-tadpoles by Chern-Simons-couplings of the RR-form C3. If we now look for
internal cycles which intersect the above objects in a point in general position and
also couple to the axionic 3-forms we are guided to consider Euclidean branes with
3 dimensions.

The Dirac-Born-Infeld and Chern-Simons-actions for Ep-Instantons are of a similar
structure as for Dp-branes (2.2.26 and 2.2.29). Looking at the coupling of the RR-
form C3 one can read off the action for E2- instantons

S = e−φ
∫

Γ3

Ω3 + i

∫

Γ3

C3 (4.2.42)

where Ω3 is the holomorphic 3-form on the internal Calabi-Yau.

4.2.4 Zero modes

Now we turn to the massless spectrum of an open string with both ends on the E2-
brane or with one end on the E2-brane and one end on a matter-D6-brane. Because
these are very important for the phenomenological parts later in this work we will
explain their properties in more detail than in the first example.

The important difference to open strings ending on Dp-branes is again the pointlike
character of E2-branes in the external space. Therefore in the external dimensions
we get Dirichlet-Dirichlet (DD) boundary conditions for open strings with both
ends on the E2-brane and Dirichlet-Neumann (DN) boundary conditions if the open
string ends on the E2-brane and on the D6-brane.

We can observe the number and properties of the different zero modes by considering
the mass formulas of the superstring with appropriate boundary conditions. As in
section 3.1 we get fractional modings αn+ǫi and ψn+κ+ǫi if the cycles wrapped by
the branes intersect at angles ǫi and κ = 1

2
(0) for the NS (R) sector. The DN-

boundary conditions give an additional shift of 1
2

in the external dimensions of the
E2-D6-sector which has the consequence that the zero point energy in the NS-sector
(which is already greater than −1

2
for generically intersecting branes) gets shifted by

1
2

and therefore there will be no zero modes from this sector. In the R-sector the zero
point energy is still zero but because of the 1

2
-shift in the mode expansion we have a

world-sheet spinor as zero mode (and is thus two-dimensional). The GSO-projection
will select a specific chirality and therefore we get one real degree of freedom.
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We now want to describe in more detail the different zero modes and give a physical
interpretation.

Zero modes in the E2-E2-sector

Due to being pointlike in four dimensions, the instanton breaks translational sym-
metry in these directions and therefore we get four massless Goldstone-bosons xµ.
In addition, some supersymmetry will be broken, depending on the geometry of the
cycle wrapped by the E2-brane: In general position it will not be invariant under
the orientifold projection and therefore we have the full N = 2 supersymmetry
(Q1,Q2) on the Calabi-Yau as constructed in the second chapter. The orientifold
projection will break half of these supersymmetries: Due to the localisation of the
instanton [27], the unbroken supercharges will be Qα

1 and Q̄α̇
2 leading to four Gold-

stino modes. To emphasize their origin of different parts of the N = 2-algebra they
will be denoted by θα and τ̄ α̇.

We conclude that (if we assume the absence of additional zero modes to be discussed
in the next subsection) to get a F-term contribution (we finally want to integrate over
the zero modes in analogy to the previous section), we have to look for a configura-
tion where half of the Goldstino-modes are absent, in other words the configuration
should only see N = 1 supersymmetry. This is the case on an appropriately placed
spacetime-filling D-brane (and therefore the E2-brane should be placed on top of
the D-brane) or on a fixed-point-cycle of the orientifold-projection. The first case is
similar to the first example of instantonic branes discussed in the previous subsec-
tion. It corresponds to the stringy realization of a gauge instanton. In the second
case one has to be careful about the action of the orientifold map which in the case
of one E2-brane projects out the τ̄ α̇ modes (see [27] for the general case of a stack
of E2-branes).

There are also zero modes coming from the different directions in which we can
deform the cycle the instantonic brane wraps. One can show that there are one
complex bosonic and four fermionic zero mode associated with one direction in
which we can deform the cycle. The multiplicity of these zero modes is counted by
the number of possible deformations which is given for E2-instantons by the first
Betti-number b1(E2). A instanton without these zero modes is called rigid.

Zero modes in the E2-D6 sector

Let us now turn to the case of an open string with one end on the E2-brane and
one end on an N -stack of D6-branes (which contains the external space). As al-
ready noticed, there are fermionic zero modes from the Ramond sector. The GSO
projection only gives rise to chiral spinors on the two-dimensional world-sheet and
we therefore get a one-dimensional Grassmannian degree of freedom. These zero
modes are called charged zero modes because they transform with respect to the
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fundamental representation of the gauge group given on the stack of D6-branes. In
the following table 4.3 we list the multiplicities of the different representations with
respect the gauge theory on the E2 and the stack of D6-branes labelled by a (which
are given by the topological intersection numbers similar to the case of intersecting
D6-branes).

Zero mode Representation Multiplicitiy
λa := λE2−a (−1E2, a) I+

E2−a
λ̄a := λa−E2 (1E2, a) I−E2−a
λ′a := λE2′−a (1E2, a) I+

E2′−a
λ̄′a := λa−E2′ (−1E2, a) I−E2′−a

Table 4.3: Zero mode content of an instantonic E2-brane intersecting with a stack
a of D6-branes

From the table we can read off the total U(1)-charge of the zero modes with respect
to the stack a:

Qa(E2) = Na(I
+
E2−a − I−E2−a − I+

E2′−a + I−E2′−a)

= Na(IE2−a − IE2′−a) (4.2.43)

4.2.5 Instanton calculus in string theory

We now want to give a way to calculate string theoretic correlation functions in a
background of D-instantons. To have a concrete case in mind, we go back to our
first example of the D(-1)/D3 -system and take again the notation introduced there
for the moduli fields. The important observation which leads us to a prescription
of how to deal with insertions of moduli fields is that the moduli fields have no
momentum in the four dimensional world and thus have no dynamics. We therefore
can identify for example a 3-point function with two moduli fields and one gauge
field with a 1-point function in spacetime. We will introduce the following notation
for disc amplitudes to write this explicitly:

〈V −1
w̄ V 0

AI
µ
V −1
w 〉 = 〈V 0

AI
µ
〉D(w̄,w) (4.2.44)

which also can be stated in terms of Feynman diagrams:

world sheet

w̄

w

−→

spacetime
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Where we depicted the instanton brane with dashed lines to distinguish it from the
D(3)-brane, which is a solid boundary.

Now let us first consider all disc diagrams with only moduli fields inserted, i.e. in the
above introduced language, spacetime-vacuum contributions (figure 4.2). In terms

= + + . . .

w̄

λ

µ

Figure 4.2: Spacetime vacuum contributions

of correlators this reads

〈1〉D(M) = 〈1〉+ 〈Vw̄VλVµ〉+ . . . (4.2.45)

Calculating the amplitude without any insertions it was shown in [30] that it is
proportional to the topological charge k. The sum of the other diagrams gives the
full moduli action:

〈1〉D(M) = −8π2k

g2
YM

− Sm (4.2.46)

The next step is to consider now also insertions of matter fields. To get the full
contribution to a correlator of n matter fields φi one has to sum over discs with all
possible configurations of moduli vertex operators VM inserted:

〈
∏

i

Vφi
〉D(M) =

8π2

g2
YM

∑

conf

∫

∏

i dzi
∏

j dyj

dVabc
〈
∏

k

Vφk
(zk, pk)

∏

l

VMl
(yl)〉 (4.2.47)

Here the division by dVabc means that we can fix three positions on the disc.

In addition to that, in analogy to the field theory case described earlier, we have to
integrate over the space of moduli. We denote the corresponding measure by dM.

This integration has the effect that a class of disconnected diagrams get connected
in the spacetime point of view. In the integrated product

∫

dM〈
∏

i

Vφi
〉D(M)〈1〉D(M) (4.2.48)

the integration over the moduli will connect the two parts at the location of the
different moduli and therefore we get a connected diagram of the fields φi. But this
works also for a product of two correlators of matter (φi) fields like

∫

dM〈
∏

i

φi〉D(M)〈
∏

j

φj〉D(M) (4.2.49)
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The result of the moduli-integration therefore is that we have also to consider these
seemingly disconnected diagrams when computing correlation functions of matter
fields in an instanton background.

In the case of equation 4.2.48 we have to sum over all kinds of products of the
vacuum contribution. Taking the different symmetry factors into account ([31]) we
get

1 + 〈1〉D(M) +
1

2
〈1〉D(M)〈1〉D(M) + . . .

= e−〈1〉D(M) (4.2.50)

In addition to that as a consequence of equation 4.2.49 we have to sum over all
different distributions of matter fields on disc diagrams.

To summarize, if we want to compute a (amputated) correlation function in an
instanton background (at disc level) we have

〈
n

∏

j=1

φj〉|D−inst =
∑

σi⊂{1...n}
˙⋃σi={1...n}

∫

dM〈
∏

k1∈σ1

Vφk1
〉D(M) · · · 〈

∏

kr∈σr

Vφkr
〉D(M)e

−〈1〉D(M)

(4.2.51)

Finally we want to remark that the above calculation only considered scattering at
disc level. To be more complete one has also to consider all different world-sheet
topologies ([30]).

4.2.6 Instanton contributions to the superpotential in type

IIA string theory

We now specialize to the case which is the most important one for our phenomeno-
logical investigations in the next chapters.

The goal is to find corrections to the superpotential of the four-dimensional effective
supergravity action. In our phenomenological considerations we do not want to
calculate the cft-correlators exactly. We just want to read off the general structure
of the correction terms and estimate their order of magnitude. To do this we have to
be careful to get the right supergravity normalization of the superpotential terms. A
superpotential term consisting of a product of chiral superfields Φi = φi +

√
2θψi +

θθFi which is multiplied by the appropriate factor of the Planck mass

W ⊃M−n
p

n+3
∏

i=1

Φi (4.2.52)

leads to an F-term in the supergravity action of the form

∂2W

∂Φi∂Φj

|θ=0e
K/2ψiψj =

eK/2ψiψj
∏

k 6=i,j φk
√

KiiKjj

∏

k 6=i,jKkk

M−n
p (4.2.53)
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Here K is the Kähler potential and Kij is the matter metric which we assume
to be diagonal for simplicity. The square root factors come from the canonical
normalisation of the matter fields. In the next step we want to estimate their
strength. For this let us denote the volume of the internal Calabi-Yau by V = Vl6s .
It can be shown ([32]) that the matter metric is inversely proportional to the real
part τb of the Kähler modulus of one of the large cycles in the internal space and
one gets the following volume dependence

Kii ∝ τ−1
b ∝ V− 2

3 (4.2.54)

In addition, the Kähler potential contains a term −2 lnV and in 4.2.53 this leads to

M−n
P V

n
3 ψiψj

∏

k 6=i,j
φk (4.2.55)

Using the relation between the string and Planck mass ([32]) Ms = MP/
√
V we

finally get a scale factor of M−n
s V−n

6 .

Let us now turn to the computation of the instanton contribution to the super-
potential using the instanton calculus. In the section about the zero modes of E2
instantons we have seen that if the instanton is rigid and lies on top of an orientifold
plane, then it has the right amount of universal zero modes to have a chance to con-
tribute to the superpotential. In general, if the cycle of the instanton intersects the
cycle on which the matter-brane-stacks are wrapped, there are in addition charged
zero modes over which we have to integrate. If we focus on contributions of the
order g0

s in the main expression 4.2.51 (which are dominant in the weak coupling
region of small gs) we see that only corrections of the form

〈Φax1Φx1x2 . . .Φxnb〉λaλ̄b
(4.2.56)

contribute (because with every λ we get a factor of
√
gs and the disc carries an

overall normalisation of g−1
s ). Thus we arrive at ([27])

〈Φa1x11Φx11x12 . . .Φx1(n1−1)x1n1
Φx1n1 b1

. . .ΦaMxM1
ΦxM1xM2

. . .ΦxM(nM−1)xMnM
ΦxMnM

bM 〉

∼=
∫

d4xd2θ
∑

conf

∏

a

(

I+E2Da
∏

i=1

dλia)(

I−E2Da
∏

i=1

dλ̄ia)

e〈1〉D(M)e1-loop〈Φ̂a1b1 [~x1]〉λa1 λ̄b1
. . . 〈Φ̂aLbL [~xL]〉λaL

λ̄bL
(4.2.57)

where we have introduced the notation

Φ̂akbk [~xk] := Φakxk1
Φxk1xk2

Φxk2xk3
. . .Φxk(nk−1)xknk

Φxknk
bk (4.2.58)

and the correlators are pictorially given by disc diagrams as depicted in figure 4.3.

In the case of an E2-instanton, the empty disc gives us a factor of

−〈1〉 =
1

gs

Vol(E2)

l3s
(4.2.59)
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E2

λ̄a

Φax1

Φx1x2

Φx2x3

··
·

λb

= 〈Φ̂ab[~x]〉λ̄aλb

Figure 4.3: Disc diagram with two zero modes λ̄a and λb which change the boundary
from the matter branes (solid lines) to the E2-instanton brane (dashed line). In
addition matter fields Φij are inserted. Between insertions Φij and Φjk the boundary
is the matter brane j.

We therefore get a supression factor of the contribution proportional to e
−Vol(E2)

gsl3s .

To sum up, if we do the integration over the zero modes we get a contribution to the
superpotential (if the number of charged zero mode fields in the correlators match
the number of charged zero modes in the measure, because otherwise the fermionic
integration gives zero) which has the schematic form

∫

d4xd2θ

M
∏

i=1

Φaibie
−SE2 (4.2.60)

and which has to be multiplied by the appropriate mass and scale factors like in
4.2.55.

We know from the action of the E2 brane that it also involves as imaginary part
the axion described in chapter 3.3.2, and which transforms under a global U(1)a-
gauge symmetry (with generator Λa) as Φ→ Φ +Qa(E2) and therefore we get the
transformation law

e−SE2 → eiQa(E2)Λae−SE2 (4.2.61)

We conclude that a instanton-generated contribution of the form 4.2.60 is invariant
under the global U(1)a-symmetry, if

∑

i

Qa(Φaibi) = −Na(Ia,E2 − Ia′,E2) (4.2.62)



Chapter 5

Yukawa couplings/mass
hierarchies in MSSM models

Now we have developed some of the most relevant tools to analyze possible phe-
nomenological implications of D-instantons. Because of 4.2.62 it is possible to have
couplings which are perturbatively forbidden because of the violation of global U(1)-
symmetries. We use this to generate Yukawa terms such as the light quark masses.

The instantonic supression factor of e
−Vol(E2)

gsl3s can be used to get the different mass
hierarchies as we observe in nature. We will demonstrate this in the next section.

But there is also a dangerous effect which often rules out MSSM models: If an in-
stanton which is needed for example to generate a perturbatively forbidden coupling
like Yukawa terms or neutrino masses, also has the right intersection (and therefore
zero-mode-) structure to generate dimension 4/5-couplings which could result in
baryon/lepton number violating processes which are strongly bounded by experi-
mental observations (like proton decay), a tension arises between getting the right
strength of the desired coupling and staying beyond experimental bounds. Obvi-
ously one of the strongest supressed effects is proton decay. The experimental bound
is τp ≥ 1032y. But also flavour violating effects are highly constrained by experiment
([44]). The contribution of instanton effects and their relation to the experimental
bounds will be investigated in the next chapter.

There is also the interesting possibility to turn the way of thinking around and use

experimental facts to derive bounds on the instantonic supression factors e
−Vol(E2)

gsl3s

which could lead to estimates on the characteristic length scale of the compactifi-
cation manifold (if one for example assumes that the E2 brane minimizes its lengh
(energy) and therefore wraps internal cycles which are of a length scale which is
characteristic for the internal manifold).

52
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5.1 Useful facts about the MSSM

But before starting to investigate the implications of D-instantons on particle physics
we first want to briefly state the most relevant facts of the minimal extension of the
standard model to a supersymmetric theory (called the minimal supersymmetric
standard model). We only state the results and the reader is invited to have a look
at the broad literature on this subject (here we used mainly the conventions of [34],
[35]; an introduction to phenomenological issues is given for example in [36], [37]
and also the references given there).

Particle content

To extend the standard model of particle physics into a supersymmetric version, one
has to fill the particle multiplets into appropriate supermultiplets. Since supersym-
metry relates fermions and bosons the idea of packing standard model fermions and
gauge bosons in the same supermultiplets suggests itself immediately. However, this
does not work since the bosons and fermions in a supermultiplet should transform
in equal representations of the gauge group. We therefore get chiral supermultiplets
for the fermions and vector supermultiplets for gauge bosons and as a consequence
the superpartners arise as the other components in the respective multiplets. In
addition, since there are contributions to the U(1)3 and U(1) − SU(2)2 anomalies
coming from the Higgsinos which do not cancel, a second Higgs doublet is needed.
In addition it is also needed for the Yukawa couplings of up and down-type particles
in order to preserve the holomorphicity of the superpotential.

The particle content is summarized in the following table:

Superfield Bosons Fermions SU(3)c SU(2)L U(1)Y
QL (ũL, d̃L) (uL, dL)

1
6

UR ũ∗R u†R 1 −2
3

DR d̃∗R d†R 1 1
3

L (ν̃, ẽL) (ν, eL) 1 −1
2

ER ẽ∗R e†R 1 1 1

Hu (H+
u , H

0
u) (H̃+

u , H̃
0
u) 1 1

2

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) 1 −1

2

G Ga
µ G̃a Ad 1 0

W W±
µ ,W

3
µ W̃±, W̃ 3 1 Ad 0

B Bµ B̃ 1 1 0

Table 5.1: Spectrum of the MSSM

where we wrote down one generation. To indicate all three generations we often use
the notation
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QI
L, U I

R, DI
R, I = 1 . . . 3 (5.1.1)

and similar for the other matter fields.

Lagrangian and couplings of the MSSM

We now give the superspace formulation of the Lagrangian of the MSSM. We will
need the structure of the couplings later on, when we try to derive some pheno-
menology induced by D-istantons which are needed in specific intersecting brane
models to generate required couplings. The strategy later will be to use the MSSM
vertices and combine them with D-instanon-generated ones to get processes which
may be observable and to get hints how processes could be realized at the 1-loop
level in string theory.

Since they are not needed later we omit the gauge fixing/ghost parts.

Let us begin with the kinetic terms for the gauge fields

Lg =

∫

d2θ
1

4
[2tr(WwWw) +WeWe + 2tr(WqcdWqcd)] + h.c. (5.1.2)

Where we have Wwα = D̄D̄e−VDαe
V and V =

∑3
a=1

τa

2
V a for the weak inter-

action and similar for the strong interaction Wqcd with Vqcd =
∑3

b=1
λb

2
V b
qcd and

Wα = −1
4
D̄D̄DαV for electromagnetism. Here the Dα is the covariant derivative in

superspace.

Then the kinetic terms of the matter superfields

Lk =

∫

d2θd2θ̄ L† exp(gτaV a + g′YlV )L

+

∫

d2θd2θ̄ E†
R exp(g′YeR

V )ER

+

∫

d2θd2θ̄ Q†
L exp(gτaV a + g′YqV + gqcdλ

bV b
qcd)QL

+

∫

d2θd2θ̄ U †
R exp(g′YuV − gqcdλbV b

qcd)UR

+

∫

d2θd2θ̄ D†
R exp(g′YdV − gqcdλ∗bV b

qcd)DR

+

∫

d2θd2θ̄ H†
u exp(gτaV a + g′YHuV )Hu

+

∫

d2θd2θ̄ H†
d exp(gτaV a + g′YHd

V )Hd (5.1.3)
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Now there are the Yukawa terms (we omit the exact normalisation)

LY =

∫

d2θ HuLEr +HuQLUR +HdQLDR − µHuHd + h.c. (5.1.4)

In addition there are soft breaking terms, which break supersymmetry but do not in-
troduce new quadratic divergences: We will use later only −m2

Hu
H∗
uHu−m2

Hd
H∗
dHd−

(bHuHd + h.c.). Finally we also can add the following terms which usually induce
dangerous processes like proton decay which is too fast and therefore one introduces
the R-pariy ([35]) symmetry which forbids them:

LR = αIJKQ
I
LL

JDK
R + βIJKL

ILJEK
R + γIL

IHu + δIJKD
I
RD

J
RU

K
R (5.1.5)

The component Lagrangian is rather long and can for example be found in [38] and
[39].

5.2 Yukawa couplings/mass hierarchies from

D-instantons

Let us first discuss the constraints which one has from theoretical considerations
(often called top-down-constraints). To illustrate the ideas we also discuss three
different examples with three, four and five D-brane stacks to realize the gauge
symmetries and matter content of the MSSM. In every model, the first two stacks
should represent the non-Abelian symmetries and the others are different U(1)-
factors, i.e. the gauge symmetry is

U(3)a × U(2)b × U(1)c × U(1)d × . . . (5.2.6)

As we know from chapter 3.3 there are no non-Abelian anomalies due to the tad-
pole cancellation condition and the mixed, Abelian and gravitational anomalies are
cancelled by the Green-Schwarz-mechanism. The tadpole condition in the case of
IIA with spacetime filling branes wrapping internal 3-cycles Πa reads

∑

n

Nn(Πn + Π′
n)− 4ΠO6 = 0 (5.2.7)

If we multiply this with the homology class of a specific cycle Πa this leads to a
condition on the muliplicities of the matter representations (remember table 3.1)

∑

n

Nn(Πa ◦ Πn + Πa ◦ Π′
n)− 4Πa ◦ ΠO6 = 0

⇒
∑

n 6=a
Nn(Πn ◦ Π′

a −Πn ◦ Πa) +NaΠa ◦ Π′
a − 4Πa ◦ ΠO6 = 0 (5.2.8)
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which can be rewritten appropriate to table 3.1

∑

n 6=a
Na(Πn◦Π′

a−Πn◦Πa)+(
Na − 4

2
)(Πa◦Π′

a+Πa◦ΠO6)+(
Na + 4

2
)(Πa◦Π′

a−Πa◦ΠO6) = 0

(5.2.9)
and therefore we get the condition

#(a)−#(ā) + (Na − 4)#( a) + (Na + 4)#( a) = 0 (5.2.10)

where #(. . . ) denotes the number of fields transforming in the representation given
in brackets.

The Green-Schwarz mechanism implies that the gauge bosons of the U(1)’s gener-
ically acquire a mass (but remain gauge symmetries due to the Stückelberg me-
chanism). To have the standard model massless hypercharge we require at least
one massless U(1) to exist, whose generator is a linear combination of the different
U(1)-generators:

U(1)Y =
∑

x

qxU(1)x (5.2.11)

As we have seen in section 3.3 this combination remains massless, if the condition
3.3.24 holds. If we multiply it again with the homology class of a specific cycle and
perform the same calculation as above, we get a second condition

−qaNa(#( a) + #( a)) +
∑

x 6=a
qxNx#( a, ¯x)−

∑

x 6=a
qxNx#( a, x) = 0 (5.2.12)

In addition to these constraints one has to adjust to various experimental observa-
tions (often referred to as bottom-up-constraints). First of all we get stacks from
which the MSSM matter fields arise. In addition there are usually more stacks to
ensure for example tadpole cancellation (these latter correspond to a hidden sector).
One requires that there are no more than the MSSM fields in the massless open string
spectrum coming from the matter brane stacks and all MSSM fields should only be
charged under the gauge symmetry of these stacks, i.e. we do not allow intersections
between the matter stacks and the additional ones. In the concrete realization of the
MSSM all the Yukawa terms in the superpotential (5.1.4) should be generated. If
they are forbidden because they violate global U(1)-symmetries, an instanton with
appropriate intersection structure is required. In addition, depending on how neu-
trino masses are realized (e.g. seesaw mechanism) a right handed neutrino mass term
NRNR is also needed. The R-parity violating couplings of equation(5.1.5) should be
forbidden (and therefore all instantons which also induce these terms) or at least
highly supressed.

More on the various phenomenological constraints can be found in [41] - [43] where
also the realization in terms of D-instantons is discussed and a systematic survey
for realistic models of the MSSM is performed.
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5.3 D-instanton induced MSSM phenomenology

In the following section we want to discuss three examples which are one of the most
promising ([43]) models of the MSSM with intersecting D-branes. The standard way
to get the Yukawa couplings is to consider maps from world-sheet discs (with the
matter fields contributing to the Yukawa coupling inserted) to the target space such
that the different boundaries connect the intersections which give the matter fields
of the Yukawa coupling. The strength of the coupling depends on the volume of the
surface spanned by these intersections (for more details, see for example [40]) and
therefore different coupling values can be explained geometrically.

In many cases, D-instantons are used to generate desired phenomenological properties
of the respective intersecting brane models. In the rest of this work we will concen-
trate on these effects and remark only as an aside on possible additional effects of
world-sheet instantons. Furthermore the underlying internal geometry will not be
fixed. We only assume the existence of geometries which have the needed cycles and
intersection structure.

5.3.1 3-stack-models

In this class of models we have the gauge symmetry

U(3)a × U(2)b × U(1)c (5.3.13)

Two different ways of realizing the massless hypercharge were found (given in [41])
which are consistent with the top down constrains and correctly give the MSSM
hypercharges:

U(1)Y =
1

6
U(1)a +

1

2
U(1)c and

U(1)Y = −1

3
U(1)a −

1

2
U(1)b (5.3.14)

For every combination, there are various possibilities to realize the MSSM matter
fields. To illustrate the way of investigating such models we choose one specific
realization with the first hypercharge and matter content given in table 5.2 ([41]).

From the U(1)-charges we can check which Yukawa couplings are allowed perturba-
tively (we indicate the charges as subscript and the family indices I, J = 1, 2, 3 as
superscript):

QI
L(1,−1,0)Hu(0,1,1)U

J
R(−1,0,−1) LI(0,1,−1)Hd(0,−1,−1)E

J
R(0,0,2)

LI(0,1,−1)Hu(0,1,1)N
J
R(0,−2,0) Hu(0,1,1)Hd(0,−1,−1) (5.3.15)

Clearly there is one forbidden Yukawa coupling:

QI
L(1,−1,0)Hd(0,−1,−1)D

J
R(2,0,0) (5.3.16)
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Sector Matter Representation Multiplicity Hypercharge

ab QL (a, b̄) 3 1
6

ac’ UR (ā, c̄) 3 −2
3

aa’ DR a 3 1
3

bc L (b, c̄) 3 −1
2

bc’ Hu (b, c) 1 1
2

bc’ Hd (b̄, c̄) 1 −1
2

bb’ NR

¯
b 3 0

cc’ ER c 3 1

Table 5.2: Spectrum of an MSSM model with hypercharge 1
6
U(1)a + 1

2
U(1)c

where we can read off the following charges for the generating instanton

Qa(E2) = −3 Qb(E2) = 2 Qc(E2) = 1 (5.3.17)

Now from the condition 4.2.62 we can determine a possible intersection structure of
the instanton such that it can generate the coupling 5.3.16:

IE2a = −1 IE2b = 1 IE2c = 1 (5.3.18)

where we assume (to avoid additional deformation zero modes and to get the right
universal zero mode structure) that the instantonic cycle is rigid and lies on top of
an orientifold plane. We therefore get zero modes which have the following trans-
formation behaviour:

λ̄a λ̄a λ̄a : (1E2, ¯a)

λb λb : (−1E2, b)

λc : (−1E2, c) (5.3.19)

The path integral contribution leading in gs giving the Yukawa term is

∫

d4xd2θd3λ̄ad
2λbdλce

−Scle1-loop〈λ̄aQI
Lλb〉〈λbHdλc〉〈λ̄aDJ

Rλ̄a〉 (5.3.20)

which leads to a contribution of the form (where we absorb all additional factors in
the constant Y IJ)

∫

d4xd2θae−SclY IJQI
LHdD

J
R (5.3.21)

Here we can already see the effect on the mass hierarchies between the three families:
The non-perturbatively realized couplings are in general supressed by the exponen-
tial factor. Depending on the factor Y this can lead to realistic hierarchies in the
MSSM model. We investigate these issues more detailed in the cases of four- and
five-stack-quivers (those will be the most relevant for further investigations in later
chapters) in the next sections.
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5.3.2 4-stack model

A very economic and beautiful way of modelling the MSSM is to take an additional
U(1)-brane, which leads to the gauge group

U(3)a × U(2)b × U(1)c × U(1)d (5.3.22)

It was shown in [42] that there are the following possible massless hypercharges
which give the correct hypercharge values of the MSSM

U(1)Y =− 1

3
U(1)a −

1

2
U(1)b

U(1)Y =− 1

3
U(1)a −

1

2
U(1)b −

1

2
U(1)d

U(1)Y =− 1

3
U(1)a −

1

2
U(1)b + U(1)d

U(1)Y =
1

6
U(1)a +

1

2
U(1)c

U(1)Y =
1

6
U(1)a +

1

2
U(1)c +

1

2
U(1)d

U(1)Y =
1

6
U(1)a +

1

2
U(1)c −

3

2
U(1)d (5.3.23)

As a realistic example we pick out and discuss an example with the hypercharge
assignment (also called the Madrid-embedding, see [42])

U(1)Y =
1

6
U(1)a +

1

2
U(1)c +

1

2
U(1)d (5.3.24)

One possible realization (which turns out to be the most realistic four-stack at the
moment, for a systematic analysis with respect to the bottom up constraints, see
[43]) is given by

Sector Matter fields Representation Multiplicity Hypercharge

ab QL (a, b̄) 3 1
6

ac′ U1
R (ā, c̄) 1 −2

3

ad′ U23
R (ā, d̄) 2 −2

3

aa′ DR a 3 1
3

bc L (b, c̄) 3 −1
2

bc′ Hu +Hd (b, c) + (b̄, c̄) 1 1
2
− 1

2

bb′ NR b 3 0
cd′ ER (c, d) 3 1

Table 5.3: Spectrum for the 4-stack model
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We get the following perturbatively allowed Yukawa couplings (we write the U(1)-
charges as subscript):

QI
L (1,−1,0,0)Hu (0,1,1,0)U

1
R (−1,0,−1,0)

LI(0,1,−1,0)Hu (0,1,1,0)N
J
R (0,−2,0,0)

Hu (0,1,1,0)Hd (0,−1,−1,0)

(5.3.25)

To complete the set of quark Yukawa couplings we have to add the following

QI
L (1,−1,0,0)Hu (0,1,1,0)U

23
R (−1,0,0,−1) (5.3.26)

which has the U(1)-charges

Qa = 0 Qb = 0 Qc = 1 Qd = −1 (5.3.27)

and therefore has to be generated by D-instantons. From equation 4.2.62 we get the
following intersection structure:

IE2,a = 0 IE2,b = 0 IE2,c = −1 IE2,d = 1 (5.3.28)

Thus we get as Yukawa matrix for the up-type quarks

M IJ
u = 〈Hu〉





gu11 gu12e
−Scl

E2 gu13e
−Scl

E2

gu21 gu22e
−Scl

E2 gu23e
−Scl

E2

gu31 gu32e
−Scl

E2 gu33e
−Scl

E2



 (5.3.29)

where the first column gI1 come from the perturbatively realized coupling. Because
there is no supression factor, we associate the mass coming from these couplings to
the top-quark.

The structure of the mass matrix results in masses for the three families related in
the following way:

mt : mc : mu ≈ 1 : e−S
cl
E2 : e−S

cl
E2. (5.3.30)

Thus we get a hierarchy between the top quark and the two light families, which
is required to get a realistic model. The mass difference between the two light
families could be realized by different world-sheet instanton contributions (which
we absorbed in the gIJ).

The above instanton gives rise to an additional problem. The zero modes also give
the following contribution to the path integral:

∫

d4xd2θdλ̄cdλd〈λ̄cERURDRURλd〉 (5.3.31)

which gives rise to a baryon-number violating coupling which also induces effects like
proton decay, which are highly supressed. We therefore see an interesting interplay
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between a relatively low supression factor for the instanton in order to get the
right Yukawa coupling and the requirement of not violating experimental bounds on
proton decay, which are very strong.

Another interesting phenomenon arises in the down-type sector. Here, the complete
set of Yukawa couplings is realized non-perturbatively:

QI
L (1,−1,0,0)Hd (0,−1,−1,0)D

I
R (2,0,0,0) (5.3.32)

We get as U(1)-charges:

Qa = 3 Qb = −2, Qc = −1, Qd = 0. (5.3.33)

and therefore the intersection numbers of the generating instanton are

IE2,a = −1 IE2,b = 1 IE2,c = 1 IE2,d = 0 (5.3.34)

The path integral gives the contribution

∫

d3λ̄ad
2λbdλcY

I
QL
〈λ̄aQI

Lλb〉YHd
〈λbHdλc〉Y J

DR
〈λ̄aDJ

Rλ̄a〉 (5.3.35)

which leads to the factorizable Yukawa matrix

Y IJ = YHd
Y I
qL
Y J
dR

(5.3.36)

Therefore only one eigenvalue is nonzero and we need 3 different instantons of the
type 5.3.34 to get 3 massive families. Using cycles with 3 different volumes we get
for the ratio of masses

mb : ms : md ≈ e−S
cl
E2,1 : e−S

cl
E2,2 : e−S

cl
E2,3 . (5.3.37)

Let us now turn to the lepton-Yukawa-couplings. From the U(1)-charges, we see
that they are forbidden perturbatively:

LI(0,1,−1,0)Hd (0,−1,−1,0)E
J
R (0,0,1,1) (5.3.38)

and therefore we need an instanton of the following type

IE2,a = 0 IE2,b = 0 IE2,c = 1 IE2,d = −1 (5.3.39)

The path integral gives the contribution

∫

dλcdλ̄de
−Scl

E2Y IJ〈λcHdL
IEJ

Rλ̄d〉 (5.3.40)

and thus there is no factorizable Yukawa structure. All lepton masses are supressed
by the same order, which is not what we observe.
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There is another possibility for an instanton to have the right charges:

IE2,a = 0 IE2,b = 0 IE2,c = 1 IE2,d = −1 IN=2
E2,c = 1 (5.3.41)

where the last entry is a so-called vectorlike-intersection, which gives the zero modes
λc, λ̄c and has zero net charge ([41]). The path integral now contains the following
contributions:

∫

d4xd2θdλ1
cdλ

2
cdλ̄cdλ̄de

−Scl
E2Y I〈λ̄cEI

Rλ̄d〉(Y J
12〈λ1

cHdL
Jλ2

c〉+ Y J
21〈λ2

cHdL
Jλ1

c〉)

=

∫

d4xd2θe−S
cl
E2Y I(Y J

12 − Y J
21)E

I
RHdL

J (5.3.42)

where the minus sign comes from the exchange of the fermionic variables λ1
c , λ

2
c .

Thus we now get a factorizable Yukawa matrix

Y IJ = Y I(Y J
12 − Y J

21) (5.3.43)

which, like in the down quark sector, allows us to use 3 different instantons to get
realistic mass hierarchies:

mτ : mµ : me ≈ e−S
cl
E2,1 : e−S

cl
E2,2 : e−S

cl
E2,3 (5.3.44)

5.3.3 5-stack model

The addition of one U(1) brane to the 4-stack model discussed in the last subsection
enlarges the number of possibilities to realize the MSSM matter fields and therefore
it is more likely to find a model which is more realistic. In [43] one of the closest
models to the MSSM which can account for lots of the various phenomenological
constraints was proposed. It uses the “extended Madrid” hypercharge embedding:

U(1)Y =
1

6
U(1)a +

1

2
U(1)c +

1

2
U(1)d +

1

2
U(1)e (5.3.45)

One choice of matter content is given in table 5.4.

The up-quark-Yukawa-couplings are the following

Q1
L (1,−1,0,0,0)Hu (0,1,1,0,0)U

12
R (−1,0,−1,0,0)

Q1
L (1,−1,0,0,0)Hu (0,1,1,0,0)U

3
R (−1,0,0,−1,0)

Q23
L (1,1,0,0,0)Hu (0,1,1,0,0)U

12
R (−1,0,−1,0,0)

Q23
L (1,1,0,0,0)Hu (0,1,1,0,0)U

3
R (−1,0,0,−1,0) (5.3.46)

Only the first one is realized perturbatively, the others are generated by appropriate
instantons. Proceeding like in the last subsection we get the Yukawa-matrix

〈Hu〉







gu11 gu12 gu13e
−Scl

E2,1

gu21e
−Scl

E2,2 gu22e
−Scl

E2,2 gu23e
−Scl

E2,3

gu31e
−Scl

E2,2 gu32e
−Scl

E2,2 gu33e
−Scl

E2,3






(5.3.47)
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Sector Matter Transformation Multiplicity Hypercharge

ab Q1
L (a, b̄) 1 1

6

ab′ Q23
L (a, b) 2 1

6

ac′ U12
R (ā, c̄) 2 −2

3

ad′ U3
R (ā, d̄) 1 −2

3

aa′ DR a 3 1
3

bc′ Hu (b, c) 1 1
2

bd′ L (b̄, d̄) 3 −1
2

be′ Hd (b̄, ē) 1 1
2

ce′ E12
R (c, e) 2 1

ce N1
R (c̄, e) 1 0

dd′ E3
R d 1 1

de N23
R (d̄, e) 2 0

Table 5.4: Spectrum for the 5-stack model

and similar for the down quark and lepton mass matrices. Again we get a hierarchical
structure for the quark masses which we want for phenomenological reasons.

For completeness we finally list the charges of all Yukawa couplings in this model:

Q1
LHuU

12
R 0 0 0 0 0

Q1
LHuU

3
R 0 0 1 − 1 0

Q23
L HuU

12
R 0 2 0 0 0

Q23
L HuU

3
R 0 2 1 − 1 0

Q1
LHdDR 3 − 2 0 0 − 1

Q23
L HdDR 3 0 0 0 1

LHdE
12
R 0 − 2 1 − 1 0

LHdE
3
R 0 − 2 0 1 − 1

LHuN
1
R 0 0 0 − 1 1

LHuN
2,3
R 0 0 1 − 2 1 (5.3.48)

To conclude, we observe that there is one heavy quark family (whose Yukawa cou-
pling is realized perturbatively) and all other couplings have to be realized by D-
instantons. Like in the 4-stack model, the appropriate choice of intersection struc-
tures can lead to realistic mass hierarchies.



Chapter 6

Flavour violating effects in MSSM
orientifold models

6.1 Flavour violation in the quark sector

Let us consider the standard model Yukawa couplings which have the general form

LY = −Y IJ
u ǫabq̄ILaφbu

J
R − Y IJ

d q̄IL · φdJR + h.c. (6.1.1)

To change to the mass eigenstate basis where the Y are diagonal, one does a rotation
with unitary matrices U and A

Yu,d = Uu,dΛu,dA
†
u,d (6.1.2)

where Λu,d are diagonal matrices. To compensate this rotation, we also change the
quark fields into the eigenstate basis:

uIL → U IJ
u uJL uIR → AIJu u

J
R

dIL → U IJ
d dJL dIR → AIJd d

J
R (6.1.3)

The rotation mixes flavours in the charged current weak interactions e.g. the one
coupling to W+:

Jµ + −→ 1√
2
ūILγ

µ(U †
uUd)

IJdJL (6.1.4)

where we define the Cabibbo-Kobayashi-Maskawa (CKM)-matrix in the usual way:

(U †
uUd)

IJdJL := V dJL := dJL
′ (6.1.5)

Thus in general there will be intergenerational mixings in charged current weak
interactions. However, in the neutral current

g

2 cos θw
(ūIγ

µ(PL −
4

3
sin2 θw)uI − d̄′Iγµ(PL −

2

3
sin2 θw)d′I (6.1.6)

64
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s̄L

dL

µ+

L

µ−L

s̄L

dL

d̄L

sL

W+

W−

W+

W−

uI ν uI ūI

Figure 6.1: Standard model box diagrams for neutral Kaon decay and mixing

(PL = 1
2
(1− γ5) and θw is the Weinberg angle) one can show that we can replace d′I

by dI and therefore there are no tree level flavour changing neutral currents (fcnc’s).
This mechanism was first realized by Glashow Ilionopoulos and Maiani (GIM) who
used it to predict the charm quark. The leading order fcnc processes can only show
up at the one-loop level, for example in the mixing of the K0-meson or its decay
(figure 6.1).

In supersymmetric extensions of the standard model (focussing on the MSSM) there
are new contributions coming from quarks and gluinos in the loop. Since we have
observed a very strong supression of these effects (for a recent review of the ex-
perimental status, see [44]), we require a very strong supression of these effects and
therefore we get bounds on the parameters of the theory, for example the squark
mixing angles.

6.1.1 Flavour violation in 5-stack quivers

We now begin to investigate possible flavour violating effects in MSSM models.
Firstly, there are perturbatively allowed contributions to quark flavour mixing, as
pointed out in [49]. They are of the four fermion- type and therefore supressed by
the square of the string mass scale Ms:

1

M2
s

〈ψ̄ψψ̄ψ〉 (6.1.7)

If in an MSSM model at least two families are realized by the same representation,
these four-fermion operators can contribute to flavour mixing. The strongest bounds
come from neutral kaon mixing and were calculated in [49]. They give a lower bound
on the string scale of Ms > 103−4 TeV.

But in addition there are also instanton contributions, which we investigate in detail
in the following.

In intersecting brane models of the MSSM we observed in chapter 5 that not every
phenomenologically required Yukawa coupling can be realized perturbatively, be-
cause of the violation of global U(1)-symmetries. Therefore we need E2-instantons
(in the case of type IIA theory) to generate the missing couplings.
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Because we have to sum over all allowed insertions of moduli and matter fields in the
path integral, we also get additional phenomenologically interesting contributions
from the “Yukawa-instantons”. Furthermore the coupling strength of the instanton
is set by the strength of the Yukawa couplings and therefore the new effects give us
bounds on the other parameters involved, like the string mass scale. In the following
we want to search systematically for phenomenologically interesting effects generated
by Yukawa-instantons. Because we know the supression scale of the instanton, we
can infer from experimental bounds on highly supressed processes some lower bounds
on the fundamental parameters in the model, like the string scale.

As a concrete model, we use the following 5-stack MSSM-quiver, first discussed in
the work [45]. It has the hypercharge

U(1)Y =
1

6
U(1)a +

1

2
U(1)c +

1

2
U(1)d +

1

2
U(1)e (6.1.8)

Table 6.1: Spectrum of the 5-stack quiver
Sector Matter Fields Representation Multiplicity Hypercharge

ab Q1
L (a, b̄) 1 1

6

ab′ Q2,3
L (a, b) 2 1

6

ac DR (ā, c) 3 1
3

ac′ U1,2
R (ā, c̄) 2 −2

3

ae′ U3
R (ā, ē) 1 −2

3

bc Hu (b̄, c) 1 1
2

bc′ Hd (b̄, c̄) 1 −1
2

bd′ L1,2 (b̄, d̄) 2 −1
2

be L3 (b, ē) 1 −1
2

cd′ E1
R (c, d) 1 1

ce′ E2,3
R (c, e) 2 1

The quark and lepton Yukawa couplings have the following U(1)-charges :

Q1
LU

12
R Hu 0,−2, 0, 0, 0

Q1
LU

3
RHu 0,−2, 1, 0,−1

Q2,3
L U1,2

R Hu 0, 0, 0, 0, 0

Q2,3
L U3

RHu 0, 0, 1, 0,−1

Q1
LDRHd 0,−2, 0, 0, 0,

Q2,3
L DRHd 0, 0, 0, 0, 0

L1,2HdE
1
R 0,−2, 0, 0, 0

L1,2HdE
2,3
R 0,−2, , 0,−1, 1

L3HdE
1
R 0, 0, 0, 1,−1

L3HdE
2,3
R 0, 0, 0, 0, 0 (6.1.9)
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For these instantons we performed a systematic analysis of the phenomenology that
contributes to the path integral (up to operators of mass dimension smaller or equal
to 5). More precisely, we listed all possible holomorphic chain products of matter
fields which are possible insertions in disc amplitudes together with the charged
zero modes coming from the intersection of the Yukawa-instantons with the mat-
ter branes. In some exceptional cases which seemed to be very interesting, also
non-holomorphic products are listed. The rules of a chain product to give an al-
lowed contribution were described in chapter 4.2. The results of the analysis are
given in the tables in appendix 3. There are various interesting operators which we
summarize and comment in the following:

1. 0,−2, 0, 0, 0

If the charges are realized with two zero modes λb, λb we get the following
interesting dimension 5 operators:

Q1
LDRU

12
R Q

1
L Q1

LU
12
R DRQ

1
L

Q1
LU

12
R E

1
RL

12 HdE
23
R U

3
RQ

1
L

L12E23
R U

12
R Q

1
L (6.1.10)

The second way to realize this charge structure is with zero modes λb, λb, λcλ̄c.
If we combine two discs with λbλb and λcλ̄c inserted, there will be no operators
of mass dimension lower than or equal to 5. But if we take one disc with λb, λc
and one with λb, λ̄c we get the following operators:

Q1
LU

12
R Q

1
LDR Q1

LU
12
R L

12E1
R

HdQ
1
LU

3
RE

23
R (6.1.11)

2. 0,−2, 1, 0,−1

If we combine λbλb with λ̄cλe there are no operators of dimension smaller or
equal to 5. Combining λbλ̄c and λbλe we get the following operators:

Q1
LDRQ

1
LU

3
R L12E1

RQ
1
LU

3
R

Q1
LDRHuHd (6.1.12)

3. 0, 0, 1, 0,−1

If we take the direct realization of the charges via λ̄cλe we get the following
operators:

DRQ
1
LL

3 HuL
3

E1
RL

12Q23
L U

3
R E23

R U
3
RQ

1
LL

3 (6.1.13)

The first line would give dangerous R-parity violating couplings!
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4. 0,−2, 0,−1, 1

Only the combination of discs with λbλd and λbλ̄e gives operators of dimension
smaller or equal to 5. They are:

L12Q1
LU

12
R E

23
R L12HdE

23
R (6.1.14)

where the last one is also R-parity violating.

5. 0, 0, 0, 1,−1

In this case, if we take the direct realization of the charges via λ̄dλe we get the
following operators:

E1
RU

12
R Q

1
LL

12 E1
RHdQ

23
L U

3
R (6.1.15)

For the second realization via λ̄dλeλcλ̄c there are 3 different possibilities to
distribute the zero modes. In the case of λ̄dλe on the first and λcλ̄c on the
second disc there are no operators of dimension 5 or lower. The combination
λ̄dλc and λeλ̄c also gives no interesting operators. Finally, the combination
λ̄dλ̄c and λeλc gives the following operators:

E1
RL

3Q1
LU

12
R E1

RL3Hd

E1
RU

3
RQ

23
L Hd (6.1.16)

Let us now focus on the possible contributions to flavour changing processes in the
quark sector. Here we concentrate on neutral meson mixing because this is very
well studied experimentally and they serve as one of the most promising examples
of searches for signals of new physics.

Consider the contribution Q1
LU

12
R Q

1
LDR from 6.1.11. Taking the F-term, it contains

the following interaction (the tilde again denotes the superpartner to the fermion)

ũ1,2
R

q1
L

dR

q̃1
L

Figure 6.2: Instanton vertex: Solid lines represent fermions and dashed lines repre-
sent the bosonic superpartners

The strength of this vertex includes the instanton supression factor and for di-
mensional reasons the inverse of the characteristic mass scale, the string mass Ms

combined with the right winding scale factor V 1
6 (as was pointed out in chapter 4.2).
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d

s̄

q̃1
L

ũ1,2
R

d̄R

sL

H̃−d

H̃+
u

Figure 6.3: Coupling of the instanton contribution to the MSSM

How does this vertex couple to the MSSM to get a contribution to the neutral kaon
mixing? One possibility is depicted in figure 6.3.

As a rough estimate of the strength of the amplitude of this process we just write
down the characteristic contributions to the vertices and the propagators (since we
are just interested in the order of magnitude of the process).

M≈ e−S0

MsV
1
6

m4
susym

2
K0µ mdms

m2
q̃1L
m2
ũ12

R

m2
H̃
m2

weak

(6.1.17)

Here we wrote a factor of m2
x for a propagator of a boson and mx for the propagator

of a fermion. We inserted a factor of the characteristic energy m4
susy coming from

the loop integration. In addition there is a factor of the initial particle mass squared
coming from the external legs and µ from the insertion of the Higgs µ-term.In
addition we get two Yukawa couplings which are of the order

mquark

mweak
, where mweak is

the electroweak breaking scale. FinallyMs is the string mass scale which is combined
with the winding scale factor V 1

6 needed for the appropriate normalization for the
superpotential.

However, if we want to have a really string theoretic contribution to neutral meson
mixing, we should check if the whole process exists in string theory. Especially
the loop should come from a one-loop diagram in open string theory. A possible
realization of the whole process would be the combination of a disc and an annulus
diagram as given in figure 6.4. As described in chapter 4.2, the integration over the
zero modes leads to a connected diagram which results in the same topology as the
MSSM process of figure 6.3 in the field theory limit.

But now we observe a problem. The out-states are fixed by the meson quark-content
and therefore all matter branes on the outer boundary of the annulus. To get the
right particles running in the loop, we have to fix the inner boundary to be the
color brane a. But now we do not get the Higgs mass insertion any more. Instead
we observe a state in the a − a-sector. It is not a gluon because it has to change
flavour. One possibility would be exotic matter and therefore we can not estimate
the strength of the amplitude. Taking the b-stack for the inner boundary of the



70CHAPTER 6. FLAVOUR VIOLATING EFFECTS IN MSSM ORIENTIFOLD MODELS

annulus would give a weak gauge boson, a quark and a Higgs field in the loop. The
result would be an effective instanton generated coupling of the form 〈Q1

LDRWHd〉
which is not gauge invariant and therefore also ruled out. The same argument holds
for the c-stack as inner boundary. The remaining stacks would again give rise to
exotic matter running in the loop.

E2
λb

Q1
L DR

λ̄c

E2
λb

Q1
L U 12

R

λc

b

a

c′a

Figure 6.4: String theoretic realization of the process

However, there is also the possibility to realize the couplings in figure 6.3 nonper-
turbatively by D-instantons. In oder to do this one has to include the additional
zero modes needed for these couplings in the annulus diagram in such a way that
all charge selection rules are fulfilled. We leave this problem for future work, given
in [46].

6.2 Lepton flavour violating

In the standard model with massless neutrinos, we have conserved lepton flavour
number. Thus every observation of lepton-flavour violating (lfv) processes would be
a definite hint for physics beyond the standard model. The most precise bounds on
possible lfv processes come from the kaon and D-meson systems. In the following we
list the most promising candidate decay processes (the branching ratio BR gives the
ratio of the decay rate of the process to the total decay rate of the initial meson).

Table 6.2: Kaon decays into standard model particles with BR < 5 · 10−10, [44]
Decay Branching ratio

K0
L → µ±e∓ < 4, 7 · 10−12

K+ → π+µ+e− < 2, 8 · 10−11

K0
L → π0µ+e− < 4, 4 · 10−10

K+ → π−µ+e+ < 5, 0 · 10−10

An investigation of the above given summary of the systematic analysis of the
instanton-induced phenomenology reveals the existence of various interesting opera-
tors which contain two quark and two lepton fields and therefore could contribute
to one of the meson decays of the table. In the last section, we observed that there
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Table 6.3: Examples for decay modes of D0 with BR< 5 · 10−6 ([47])
Decay Branching ratio

D0 → e+e− 0, 6 · 10−6

D0 → µ+µ− 3, 4 · 10−6

D0 → µ±e∓ 1, 9 · 10−6

is an additional limitation on possible processes if we want to realize them purely
string theoretic, and therefore we will directly look for combinations of discs or discs
with annuli. Taking the operator

Q1
LU

12
R E

1
RL

12 (6.2.18)

we get the combination of a disc with an annulus which is given in figure 6.5. There
are the following particles running in the loop (we use our example quiver of table
6.1): The bd′-sector corresponds to a lepton L, dd′ is a gauge boson (photon) or
its superpartner and the dc-sector corresponds to E1

R. Therefore, in field theory the
process would correspond to the Feynman diagram given in figure 6.6. To get proper
MSSM couplings with standard model fermions as out-states, we get superpartners
running in the loop: In our case sleptons L̃ and Ẽ1

R and the photino γ̃. The whole
process would therefore contribute to the following decays of the D0-meson:

D0 → e−e+ D0 → µ−e+ (6.2.19)

E2
λb

Q1
L U 12

R

λc

E2
λb

L12 E1
R

λ̄c

b

d′

cd′

Figure 6.5: Instanton contribution to D0-decay

Let us now estimate the order of magnitude of this process in field theory. From
the instanton vertex we get the supression factor e−S0

MsV
1
6

which can be rewritten in

terms of the Planck scale as e−S0

M
2
3

s MP

1
3

. From the loop integration we get a factor of

m4
susy. Together with the propagator masses, the electromagnetic coupling constant

and using as kinematical factor the mass of the initial state of the D0 we get

M∝ e−S0

M
2
3
s M

1
3
P

m4
susy

m2
D0

m5
susy

g2
em(msusy) (6.2.20)
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Q1
L

U 12
R

L̃

Ẽ1
R

L

E1
R

γ̃

Figure 6.6: Instanton contribution to D0-decay

Using 1TeV for the supersymmetry scale, 1
100

for the instantonic supression (which
is set by the ratio of the haviest quark to the charm quark) and the mass of the D0

(2GeV), we get as a rough estimate

M∝ 2 · 10−14TeV
2
3

M
2
3
s

(6.2.21)

We want to compare this to the experimental bound for the above given D0-decays.
The lifetime of the D0 is τD0 = 4, 1 · 10−13sec which gives us (using the branching
ratio given in table 6.3) a decay rate of

ΓD0→LE1
R

= BR(D0 → LE1
R)ΓD0 < 10−18GeV. (6.2.22)

Now the amplitude of the process can be estimated by using

ΓD0→LE1
R
≈ mD0 |M|2 (6.2.23)

The result is |M| < 10−9. Comparing this with the field theory estimate of the
instanton process we get a lower bound on the string scale of order 10−7 TeV which
is not very restrictive.

We see that the winding factor gives us an additional very high supression factor
such that instanton contributions to meson decay are very weak. To illustrate this,
we skip this normalization factor and calculate only with the naive expectation of a
supression of 1

Ms
characteristic for effective dimension 5 operators, i.e. we have

M∝ e−S0

Ms
m4

susy

m2
D0

m5
susy

g2
em(msusy) = 4 · 10−9TeV

Ms
(6.2.24)

which would lead to the lower bound of Ms > 2 TeV. Another important fact is
the experimental bound on the D0-decay, which is not as good as for kaon decays.
If we had experimental bounds similar to kaon decays (table 6.2), we would get
Ms > 3 · 10−3 TeV with winding scale and Ms > 2 · 103 TeV without this scale.
We conclude that instanton generated contributions to flavour violating processes
give weaker bounds on the string scale in our example model as for example the
perturbatively realized coupling 〈D̄RDRD̄RDR〉.



Chapter 7

Summary and outlook

At the beginning of this work, a brief introduction to the basics of Calabi-Yau
and orientifold compactification and a discussion of the most important proper-
ties and consistency conditions of intersecting D-brane models was given. Tad-
pole/anomaly cancellation resulted in important constraints on the geometry of
intersecting branes (and therefore on the particle content of the brane realization
of the standard model or the MSSM). We then introduced D-brane instantons by
first studying the D(-1)/D(3)-system. Here one can observe that D(-1) branes filling
the external Minkowski space can be interpreted as gauge instantons, especially by
noting that we could get the ADHM constraints and the classical instanton solution
by considering scattering of open strings ending on the D(-1)/D(3)-branes.

Generalizing this idea, we were traced to the consideration of Euclidean branes in
the internal Calabi-Yau manifold, which are pointlike in the external space. Using
an analogy to the field theory prescription of integrating over the space of collective
coordinates, we were able to compute instanton corrections to the effective four-
dimensional superpotential of the compactified type IIA theory.

We realized that these corrections can be used to generate perturbatively forbidden
but phenomenologically desired Yukawa couplings in MSSM orientifold models. Due
to the instanton-supression factor, depending on the volume of the internal cycle,
it was possible to get realistic mass hierarchies for the different families of par-
ticles. But we also observed that these “Yukawa-instantons” not only generate the
Yukawa couplings but also give rise to other superpotential couplings, like baryon-
number-violating terms leading for example to proton decay. In order not to violate
experimental bounds and still to get realistic mass hierarchies, we presented 5-stack
models of the MSSM (first found in [41]) whose Yukawa couplings do not generate
such catastrophic effects.

But even in the absence of proton decay operators there is still the possibility of
flavour violating effects in the quark and lepton sector. On the one hand, there are
perturbatively allowed flavour violating effects firstly discussed in [49]. In addition
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we found in the last chapter (after performing a systematic analysis of instanton-
generated operators of mass dimension smaller or equal to 5, presented in the ap-
pendix) the presence of lepton flavour violating effects generated by D-instantons.
Especially we found a contribution of a disc and an annulus diagram to the decay
of the neutral D-meson. Due to the experimentally measured supression of this pro-
cess, it was possible to get a lower bound on the string scale. This lower bound is
weaker than the bound which one gets by considering perturbatively allowed contri-
butions to neutral kaon mixing, mainly because of the winding-scale supression of
superpotential couplings and the weak experimental bound which will be definitely
improved at the Large Hadron Collider in the future.

It would be interesting to find an MSSM orientifold model which also does not al-
low the above mentioned perturbatively allowed flavour violating operators. These
models would be interesting candidates for models with a low string scale (and
therefore very exciting for future experiments at the LHC) and the instanton con-
tributions to flavour violating would give very important lower bounds on the string
scale in such models. We leave it for future research to check if such models are
possible (passing for example the tadpole/anomaly constraints). In this case it is
important to determine the lower bounds on the string scale coming from instanton
contributions to flavour violating effects as discussed in the last chapter.



Appendix A

Mathematical definitions

A.1 Â-class, Hirzebruch L-class and the Chern

character

In the first appendix we want to give the definitions of important geometrical quan-
tities used in the main text. To write down the Chern-Simons couplings of D-branes
and O-planes, we used the Chern character, the Â-class and the Hirzebruch -L -
class. We now want to state briefly the geometric background.

A.1.1 Multiplicative sequences

Let E −→ X be a complex vector bundle of rank n over a manifold X. Let us
denote by c(E) the total Chern class

c(E) = 1 + c1(E) + c2(E) + · · ·+ cn(E) (A.1.1)

The Chern classes ck are defined as follows. Let P
π−→ X be the associated Gl(n,C)

principal bundle to E and Ω its curvature. Then we can express the following
determinant in terms of the pullbacks of forms on X

det(1n −
1

2πi
Ω) = π∗(1 + α1 + · · ·+ αn) (A.1.2)

and cl(E) is the cohomology class of the form αl.

One can show that the total Chern class has the following useful property:

c(E ⊕E ′) = c(E)c(E ′) (A.1.3)

As an application of this, let us assume we can split the bundle E into a sum of
complex line bundles E ∼= L1 ⊕ · · · ⊕ Ln, then we get from A.1.3

c(E) =
n

∏

k=1

(1 + xk) xk = c1(Lk) (A.1.4)
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Let us also define the rational Pontrjagin classes. For this E should be a real oriented
vector bundle of dimension 2n and we define the rational Pontrjagin classes by

pj(E) = (−1)jc2j(E ⊗ C) (A.1.5)

and the total Pontrjagin class is given by

p(E) = 1 + p1(E) + p2(E) + · · ·+ pn(E) (A.1.6)

It has the same property A.1.3 as the total Chern class. As a similar application we
assume now that the complexification E ⊗ C can be decomposed as a sum of line
bundles

E ⊗ C ∼= L1 ⊕ L̄1 ⊕ · · · ⊕ Ln ⊕ L̄n (A.1.7)

and we get for the total Pontrjagin class

p(E) =

n
∏

k=1

(1 + x2
k) (A.1.8)

As a next step we introduce the notion of a multiplicative sequence. Let Q̂[[x]] denote
the set of formal power series with variable x and constant term 1. For an element
g(x) ∈ Q̂[[x]] let us consider the expression in k variables g(x1) · · · g(xk) which is
symmetric in the xl and therefore can be expanded in terms of the elementary
symmetric functions σr(x1, . . . , xk) =

∑

i1<···<ir xi1 · · ·xir :

g(x1) · · · g(xk) = 1 + F1(σ1) + F2(σ1, σ2) + F3(σ1, σ2, σ3) + . . . (A.1.9)

Where the Fi(σ1, . . . , σi) are polynomials (one can show that they are well defined
independent of the number of variables x1, . . . , xk) and define the so-called multi-
plicative sequence {Fl(σ1, . . . , σl)}∞l=1 determined by the power series g(x).

If we now have a commutative algebra A with unit over Q which allows a decompo-
sition A = A0 ⊕A1 ⊕A2 ⊕ . . . and AmAn ⊆ Am+n, let us define the set Â of formal
sums

1 + a1 + a2 + . . . ai ∈ Ai (A.1.10)

with the following multiplication rule

(1+a1 +a2 + . . . )(1+ b1 + b2 + . . . ) = 1+(a1 + b1)+ (a2 +a1b1 + b2)+ . . . (A.1.11)

i.e. we collect the terms of equal grading. With this multiplication Â turns into an
Abelian group. If we now have a multiplicative sequence as given above, we get a
group homomorphism

F :Â→ Â

1 + a1 + a2 + . . . 7→ 1 + F1(a1) + F2(a1, a2) + . . . (A.1.12)
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which gives for Â = Q̂ and the multiplicative sequence determined by g(x):

F(1 + σ1 + σ2 + · · ·+ σn) = g(x1)g(x2) · · · g(xk) (A.1.13)

as we can see from the expansion A.1.9.

If we take as algebra the cohomology groups H2∗(X,Q), we can define the to-
tal F -class of the bundle E as F(c(E)). From the property A.1.3 and from the
homomorphism-property of F we get (if we use the Splitting principle [16])

F(c(E)) =F(

n
∏

i=1

(1 + c1(Li)))

=F(1 + σ1(c1(L1), . . . , c1(Ln)) + σn(c1(L1), . . . , cn(Ln)))

=g(c1(L1)) · · · g(c1(LN )) (A.1.14)

The same statements hold for real bundles and multiplicative sequences of Pontrjagin
classes.

We are now finally able to write down the classes we used in the main text. If we
take as formal power series

â(x) =

√
x/2

sinh(
√
x/2)

= 1− 1

24
x+

7

27 · 32 · 5x
2 + . . . (A.1.15)

we get as multiplicative sequence the Â-sequence. Writing xk = c1(Lk) we get for
the total Â-class

Â(E) =
∏

j

xj/2

sinh(xj/2)

=1 + Â1(σ1(x
2
1, . . . , x

2
n)) + Â2(σ1(x

2
1, . . . , x

2
n), σ2(x

2
1, . . . , x

2
n)) + . . . (A.1.16)

where the the first three terms in the multiplicative sequence are given by

Â1(p1) = − 1

24
p1

Â2(p1, p2) =
1

27 · 23 · 5(−4p2 + 7p2
1)

Â3(p1, p2, p3) = − 1

210 · 33 · 5 · 7(16p3 − 44p2p1 + 31p3
1) (A.1.17)

Taking for the formal power series the following

l(x) =

√
x

tanh(
√
x)

= 1 +
1

3
x− 1

45
x2 + . . . (A.1.18)

we get the Hirzebruch-L-sequence

L(E) =
∏

j

xj
tanh(xj)

(A.1.19)
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A.1.2 The Chern character

We finally want to give the definition and the easiest properties of the Chern char-
acter. If we write the total Chern class of a complex vector bundle E formally as a
product

c(E) = 1 + c1(E) + c2(E) + · · ·+ cn(E) =

n
∏

k=1

(1 + xk) (A.1.20)

we can define the Chern character by [16]

ch(E) := ex1 + · · ·+ exn (A.1.21)

It has the following behaviour for direct sums and tensor products of vector bundles:

ch(E ⊕ E ′) = ch(E) + ch(E ′)

ch(E ⊗ E ′) = ch(E)ch(E ′) (A.1.22)



Appendix B

Clifford algebra, t’Hooft tensors
and spin field correlators

In this appendix the main conventions used in chapter 4 will be explained briefly
and the calculational tools will be stated. We begin with the conventions for the
Euclidean d = 4 Clifford algebra and the t’Hooft symbols. A representation of
the Euclidean Lorentz group SO(4) is given in terms of the identity and the Pauli
matrices

σµ = (1, ~τ) σ̄µ = σ†
µ = (1, i~τ) (B.0.1)

which fulfil the Clifford algebra

σµσ̄ν − σν σ̄µ = 2δµν1 (B.0.2)

and act on two component spinors ψ =
(

ψα

ψα̇

)

. The Lorentz generators are given by

σµν =
1

2
(σµσ̄ν − σν σ̄µ) σ̄µν =

1

2
(σ̄µσν − σ̄νσµ) (B.0.3)

In ten dimensions the spinor representation of the Lorentz group has dimension 32
and the corresponding gamma-matrices can be decomposed into dimension four and
six gamma matrices in the following way :

Γµ32 = γ4 ⊗ 18 µ ∈ {1, . . . , 4}
Γa32 = γ5

4 ⊗ Γa8 a ∈ {5, . . . , 10} (B.0.4)

where the subscripts denote the dimensionality of the representation, which is 2d/2

if spacetime is d-dimensional.

The dimension six gamma matrices Γa8 are given by

Γa8 =

(

0 Σa

Σ̄a 0

)

(B.0.5)
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where the Σ-matrices obey the six-dimensional Clifford algebra. They act on SO(6)-

spinors
(

ΛA

ΛA

)

.

The t’Hooft symbols are defined by

(σµν)
β
α = iηcµν(τ

c) β
α

(σ̄µν)
α̇
β̇

= iη̄cµν(τ
c)α̇

β̇
(B.0.6)

they can be explicitly written down in terms of antisymmetric and symmetric sym-
bols:

ηcµν = η̄cµν = ǫcµν , µ, ν ∈ {1, 2, 3}
η̄c4ν = −ηc4ν = δcν
ηcµν = −ηcνµ, η̄cµν = −η̄cµν (B.0.7)

Now let us finally write down the technical tools given by correlation functions
which were used in chapter 4 to calculate the tree level amplitudes. Let us denote
the fermionic part of the superstring by ψµ (which is needed also for vertex operators
in the Neveu-Schwarz sector) and the spin field (needed for vertex operators in the
Ramond sector by Sα, SA (we already performed the splitting into four and six
dimensional fields), we used the following correlators (a systematic survey of these
results can be found in [48]):

〈Sα̇(z1)ψµ(z2)Sβ(z3)〉 =
1√
2
(σ̄µ)

α̇
β(z1 − z2)−

1
2 (z2 − z3)−

1
2

〈Sα̇(z1)ψµψν(z2)S β̇(z3)〉 =− 1

2
(σ̄µν)

α̇β̇(z1 − z3)
1
2 (z1 − z2)−1(z2 − z3)−1

〈SA(z1)ψ
a(z2)S

B(z3)〉 =
i√
2
(Σa)AB(z1 − z2)−

1
2 (z1 − z3)−

1
4 (z2 − z3)−

1
2

〈SA(z1)ψ
a(z2)SB(z3)〉 =− i√

2
(Σa)AB(z1 − z2)−

1
2 (z1 − z3)−

1
4 (z2 − z3)−

1
2 (B.0.8)

In addition to that, we used boundary changing operators for the open strings in the
D(−1)−D3 system because of the mixed Dirichlet-Neumann boundary conditions.
Their correlators can be calculated by using the operator product expansions:

∆(z1)∆̄(z2) ∼= (z1 − z2)
1
2 ∆̄(z1)∆(z2) ∼= −(z1 − z2)

1
2 (B.0.9)

where the minus sign is the rule to get the right spacetime statistics in the compu-
tation of correlators.



Appendix C

Systematic analysis of the 5-stack
model

In the following tables we will systematically write down all holomorphic chain
products of matter superfields that are allowed by the global U(1)-symmetries if we
combine them with the zero modes given in the headline of the tables. The zero
modes come from the intersection of an instantonic E2-brane with the matter stacks
of the 5-stack quiver given in table 6.1. These instantons are needed to generate
non-perturbatively the quark and lepton Yukawa couplings which are also listed. In
some exceptional cases we also listed non-holomorphic products (labelled by “anti”).

Quark Yukawa couplings

Q1
LU

12
R Hu

charge: 0 − 2 0 0 0

zero modes : λb λb and λb λb λc λ̄c
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Table C.1: λb λb

b b̄a āc c̄ā ab̄ Q1
LDRU

12
R Q

1
L

c̄b̄ x Q1
LDRHd

āc̄ cā ab̄ Q1
LU

12
R DRQ

1
L

cb̄ x Q1
LU

12
R Hu

cd d̄b̄ Q1
LU

12
R E

1
RL

12

ce ēb̄ No
āē ec c̄b̄ Q1

LU
3
RE

23
R Hd

b̄c c̄ā ab̄ x HuU
12
R q

1
L

ab No
c̄d̄ ba āb̄ anti

bē eb̄ anti
c̄b̄ x x HuHd

b̄c̄ cā ab̄ x HdDRQ
1
L

ab No
cb̄ b āb̄ anti
cb̄ x x HuHd

cd d̄b̄ x HdE
1
RL

12

ce ēā ab̄ HdE
23
R U

3
RQ

1
L

ēb x No
b̄d̄ dc c̄ā ab̄ L12E1

RU
12
R Q

1
L

c̄b̄ x L12E1
RHd

λb λb λcλ̄c

Table C.2: λb λc

b b̄a āc c̄c No
āc̄ x Q1

LU
12
R

āē ec̄ No
b̄c c̄ā ac̄ anti

c̄b̄ bc̄ anti
b̄c̄ cā ac̄ anti

cb̄ bc̄ anti
cd d̄c̄ No
ce ēc̄ No
x x Hd

b̄d̄ dc x No
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Table C.3: λbλ̄c

b b̄a āc x Q1
LDR

āc̄ x No
āē ec Q1

LU
3
RE

23
R

b̄c x x Hu

c̄ā ac anti
c̄b̄ bc anti

b̄c̄ cā ac anti
cb̄ bc anti
cd d̄c No
ce ēc No

b̄d̄ dc x L12E1
R

Q1
LU

3
RHu

charge: 0 − 2 1 0 − 1
zero modes: λbλbλ̄cλe

Table C.4: λ̄cλe

c̄ cā ab̄ ba aē No
bē x DRQ

1
LL

3

ab b̄a aē No
b̄c c̄ē anti
b̄c̄ cē No
b̄d̄ dē No

cb̄ ba āc c̄ē anti
āc̄ cē No
āē x HuQ

23
L U

3
R

bē ec c̄ē anti
bē x x HuL

3

cd d̄b̄ ba āē E1
RL

12Q23
L U

3
R

bē x E1
RL

12L3

ce ēb b̄a aē No
b̄c c̄ē anti
b̄c̄ cē No
b̄d̄ dē No

ēā ab b̄ē No
ab̄ bē E23

R U
3
RQ

1
LL

3

Q1
LDRHd
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Table C.5: λbλe

b b̄a āc c̄ā aē No
c̄b̄ bē Q1

LDRHdL
3

āc̄ cā aē No
cb̄ bē Q1

LU
12
R HuL

3

cd d̄ē No
ce x No

āē x x Q1
LU

3
R

b̄c c̄ā āē x HuU
12
R U

3
R

c̄b̄ bē x HuHd

b̄c̄ cā aē No
cb̄ bē x HdHuL

3

cd d̄ē No
ce x No

b̄d̄ dc c̄ē No

charge: 0 − 2 0 0 0

phenomenology already discussed

Q23
L DRHd

charge: 0 0 0 0 0

perturbatively allowed.

Q23
L U

12
R Hu

charge: 0 0 0 0 0

therefore perturbatively allowed.

Q23
L U

3
RHu

charge: 0 0 1 0 − 1

zero modes: λ̄cλe

this sector was already checked.

other realization: λbλ̄bλ̄cλe if possible.
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Table C.6: λ̄bλe

b̄ ba āc c̄ā aē No
c̄b̄ bē Q23

L DRHdL
3

āc̄ cā aē No
cb̄ bē Q23

L U
12
R HuL

3

cd d̄ē No
ce x No

āē x x Q23
L U

3
R

bē x x x L3

ec c̄ā aē No
c̄b̄ bē L3E23

R HdL
3

Lepton Yukawa couplings

L12HdE
1
R

charge: 0 − 2 0 0 0

phenomenology already discussed.

L12HdE
23
R

charge: 0 − 2 0 − 1 1

zero modes: λb, λb, λd, λ̄e

Table C.7: λdλe

d d̄b̄ ba āē L12Q23
L U

3
R

bē x L12L3

L3HdE
23
R

charge: 0 0 0 0 0

therefore perturbatively allowed.

L3HdE
1
R

charge: 0 0 0 1 − 1

zero modes: λ̄d, λe

second realization: λ̄d, λe, λc, λ̄c
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Table C.8: λb, λd

b b̄a āc c̄d̄ No
āc̄ cd̄ No
āē ed̄ No

b̄c c̄ā ad̄ No
c̄b̄ bd̄ No

b̄c̄ cā ad̄ No
cb̄ bd̄ No
cd x No
ce ēd̄ No

b̄d̄ x x L12

dc c̄d̄ No

Table C.9: λbλ̄e

b b̄a āc c̄ā ae No
c̄b̄ be No

āc̄ cā ae No
cb̄ be No
cd āe No
ce x Q1

LU
12
R E

23
R

āē ec c̄e No
b̄c c̄ā ab̄ be No

ab b̄e No
c̄b̄ ba āe No

bē x No
b̄c̄ cā ab̄ be No

cb̄ ba āe No
bē x No

cd d̄b̄ be No
ce x x HdE

23
R

b̄d̄ dc c̄ā ae No
c̄b̄ be No

Table C.10: λ̄d, λe

d̄ dc c̄ā ab̄ bē E1
RU

12
R Q

1
LL

12

ab b̄ē No
c̄b̄ ba āē E1

RHdQ
23
L U

3
R

bē x E1
RHdL

3
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Table C.11: λ̄d, λc

d̄ dc c̄ā ac̄ x No
ab̄ b̄c̄ E23

R U
12
R Q

1
LHd

ab bc̄ No
c̄b̄ ba ac̄ anti

bē ec̄ No

Table C.12: λ̄dλ̄c

d̄ dc x x x E1
R

c̄ā ab̄ b̄c E1
RU

12
R Q

1
LHu

ab bc No

Table C.13: λeλc

e ēb b̄a āc x No
āc̄ x L3Q1

LU
12
R

āē ec̄ No
b̄c c̄ā ac̄ anti

c̄b̄ bc̄ anti
b̄c̄ x x L3Hd

cā ac̄ anti
cb̄ bc̄ anti

b̄d̄ cd d̄c̄ No
ce ēc̄ No
dc x No

ēā ab̄ ba āc̄ U3
RQ

1
LQ

23
L U

12
R

bē ec̄ No
ab b̄a āc̄ U3

RQ
23
L Q

1
LU

12
R

b̄c̄ x U3
RQ

23
L Hd

b̄d̄ dc̄ No
b̄c x No
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Table C.14: λcλ̄c

c c̄ā ab̄ ba āc U12
R Q

1
LQ

23
L DR

bē ec U12
R Q

1
LL

3E23
R

ab b̄a āc U12
R Q

23
L Q

1
LDR

b̄c x U12
R Q

23
L Hu

b̄c̄ x No
b̄d̄ dc U12

R Q
23
L L

12E1
R

c̄b̄ ba āc x HdQ
23
L DR

āc̄ x No
āē ec HdQ

23
L U

3
RE

23
R

bē ec x HdL
3E23

R
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